We investigated radial growth of post oak (Quercus stellata Wangenh.) growing in a range of stand structures (forest to savanna) created in 1984 by different harvesting, thinning, and prescribed fire intervals. We related ring width index (RWI) to monthly and seasonal climate variables and time since fire to assess impacts of climate variability and interactions with management on radial growth. The RWI of all treatments was positively correlated to minimum daily temperature the previous September and precipitation late spring and early summer the current year, and negatively correlated to maximum daily temperatures and drought index late spring – early summer. June weather was most strongly correlated in four of five treatments. While stand structure affected absolute diameter growth, the RWI of savanna and forest stands responded similarly to climate variability, and low intensity prescribed fire did not influence RWI. On average, a 100 mm reduction in June precipitation decreased RWI by 7%, a 1 °C increase in previous-year September daily minimum temperature increased RWI by 3.5%, and a 1 °C increase in June maximum daily temperature decreased RWI by 3.7%. Therefore, negative effects of drought and warmer spring and summer temperatures may be reduced by a longer growing season under warmer climate scenarios. However, management did not appear to influence RWI.
more »
« less
This content will become publicly available on February 19, 2026
Changing climate response of Northeast Ohio white oaks, USA: Is it tree age or site age?
White oak, a keystone species of the broadleaf forests of the North American Midwest, has a significant role in providing ecosystems services in a region experiencing warming and increasingly pluvial conditions. A one- hundred-year-old white oak stand in an arboretum, along with two second growth (~200-year-old) stands from Northeast Ohio have consistently responded positively to summer (June-July) precipitation over the past century, whereas four nearby old growth sites (>300 years old) have lost their moisture sensitivity since about the mid 1970s. This “fading drought signal,” which has been previously reported, appears to be more a result of the legacy of land use at the individual sites rather than tree age. The younger oak stands and their relative sustained drought sensitivity is also related to their history of recently attaining the canopy and similar responses associated with intervals of selective logging. All sites are strongly, negatively correlated with summer (June- July) maximum monthly temperatures and in general the maximum temperatures are negatively correlated with precipitation in those months. Future warming in the Midwest is projected to see increases in spring precipitation and likely decreases in late summer precipitation linked to a northward migration of the North American Westerly Jet. This projected decrease in summer precipitation coupled with an increase in maximum and min- imum summer temperatures in the coming decades would increase the moisture stress on these trees. Our ex- amination of these varying climate responses with respect to site characteristics and forest age can help future assessments of tree health and the forest’s ability to sequester carbon, as well as facilitate efforts to reconstruct climate by using a range of tree sites for intervals when sensitivity in old growth sites is lost.
more »
« less
- Award ID(s):
- 2039939
- PAR ID:
- 10648834
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Dendrochronologia
- Volume:
- 91
- ISSN:
- 1125-7865
- Subject(s) / Keyword(s):
- Tree-rings Climate change Paleoclimate Ecosystem services Quercus alba L
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Southwestern North America has experienced significant temperature increases over the last century, leading to intensified droughts that significantly affect montane forests. Although tree‐ring data have provided long‐term context for this recent drought severity, the varying physiological responses of trees to climate variability make it challenging to disentangle the combined influence of temperature and soil moisture. Here we investigate complex climate‐growth relationships in Rocky Mountain bristlecone pine (Pinus aristata) at a low‐elevation and a high‐elevation site using quantitative wood anatomy (QWA). Significant correlations with climate were found for low‐elevation tree‐ring width (TRW) and earlywood chronologies, including positive correlations with spring and early summer precipitation and drought indices and negative correlations with spring and early summer maximum temperatures. At high elevations, TRW and earlywood chronologies show positive responses to summer moisture, whereas latewood chronologies correlate positively with August and September maximum temperatures and negatively with August precipitation. We leverage this differing seasonality of moisture and temperature signals and compare the QWA data to known droughts. The earlywood lumen area is found to be highly responsive to drought because of its physiological reliance on water availability for maintaining turgor pressure during cell enlargement. We also observed a decline in temperature sensitivity at the high elevation site, suggesting shifts in the dominance of limiting factors. Integrating QWA with traditional dendrochronology improves interpretations of tree‐ring data for use in climate reconstruction, offering detailed insights into tree physiological responses and the mix of environmental and developmental controls on cell growth.more » « less
-
The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure.more » « less
-
Mäkelä, Annikki (Ed.)Abstract Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16–18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.more » « less
-
ABSTRACT Forest composition is changing, yet the consequences for terrestrial carbon cycling are unclear. In the eastern United States, water‐demanding “mesophytic” tree species are replacing “xerophytic” oaks (Quercusspp.) and hickories (Caryaspp.), raising concerns that forest productivity will become increasingly sensitive to more frequent and severe drought conditions predicted for the region. However, we have a limited understanding of the extent to which the mortality risk of xerophytes versus mesophytes is coordinated with their growth sensitivity during drought. Here, we evaluated growth and mortality dynamics for 20 abundant eastern United States tree species following a severe drought in the summer of 2012. We synthesized data from ~4500 forest inventory plots and used an approach that quantified relative drought responses between co‐located trees to minimize impacts from environmental heterogeneity. We found that mesophytes were just as likely to perish as co‐occurring xerophytes but were more sensitive to drought in terms of diminished growth. These findings suggest that xerophytic decline is likely to lead to reduced carbon uptake during drought and that management efforts to conserve oak‐hickory stands will be decisive to sustain the carbon mitigation potential of these forests. However, we also found that growth‐mortality relationships differed between functional groups. Among xerophytes, growth and survival during drought were decoupled. Among mesophytes, there was a high degree of coordination, where species that experienced greater mortality also experienced greater growth reductions. Therefore, mesophytes with high growth sensitivity to water deficits are likely to be the most vulnerable to drought‐driven die‐off events moving forward.more » « less
An official website of the United States government
