In this work, we experimentally studied bubble formation on the superhydrophobic surface (SHS) under a constant gas flow rate and at quasi-static regime. SHS with a radius RSHS ranging from 4.2 to 19.0 mm was used. We observed two bubbling modes A and B, depending on RSHS. In mode A for small RSHS, contact line fixed at the rim of SHS, and contact angle (θ) initially reduced, then maintained as a constant, and finally increased. In mode B for large RSHS, contact line continuously expanded, and θ slowly reduced. For both modes, during necking, contact line retracts, and θ was close to the equilibrium contact angle. Moreover, the pinch-off of bubble at the early stage was similar to the pinch-off of bubble from a nozzle and followed a power-law relation Rneck ∼ τ0.54, where Rneck is the minimum neck radius and τ is the time to detaching. Furthermore, we calculated the forces acting on the bubble and found a balance between one lifting force (pressure force) and two retaining forces (surface tension force and buoyancy force). Last, we found a waiting time for a finite volume to be detected for large RSHS. The detached volume was well predicted by Tate volume, which was derived based on balance between buoyancy and surface tension and was a function of bubble base radius.
more »
« less
This content will become publicly available on June 1, 2026
Effect of Surfactant on Bubble Formation on Superhydrophobic Surface in Quasi-Static Regime
We experimentally studied the effect of a surfactant on bubble formation on a superhydrophobic surface (SHS). The bubble was created by injecting gas through an orifice on the SHS at a constant flow rate in the quasi-static regime. The surfactant, 1-pentanol, was mixed with water at concentration C ranging from 0 to 0.08 mol/L, corresponding to surface tension σ ranging from 72 to 43 mN/m. We found that as C increased, the bubble detachment volume (Vd) and maximum bubble base radius (Rdmax) decreased. For a low surfactant concentration, the static contact angle θ0 remained nearly constant, and Vd and Rdmax decreased due to lower surface tensions, following the scaling laws Rdmax~σ1/2 and Vd~σ3/2. The bubble shapes at different concentrations were self-similar. The bubble height, bubble base radius, radius at the bubble apex, and neck radius all scaled with the capillary length. For high surfactant concentrations, however, θ0 was greatly reduced, and Vd and Rdmax decreased due to the combined effects of reduced θ0 and smaller σ. Lastly, we found that the surfactant had a negligible impact on the forces acting on the bubble, except for reducing their magnitudes, and had little effect on the dynamics of bubble pinch-off, except for reducing the time and length scales. Overall, our results provide a better understanding of bubble formation on complex surfaces in complex liquids.
more »
« less
- PAR ID:
- 10648917
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Biomimetics
- Volume:
- 10
- Issue:
- 6
- ISSN:
- 2313-7673
- Page Range / eLocation ID:
- 382
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recognising that surfactants can impede the drag reduction resulting from superhydrophobic surfaces (SHS), we investigate the impact of spatio–temporal fluctuations in surfactant concentration on the drag-reduction properties of SHS. We model the unsteady transport of soluble surfactant in a channel flow bounded by two SHS. The flow is laminar, pressure driven and the SHS are periodic in the streamwise and spanwise directions. We assume that the channel length is much longer than the streamwise period, the streamwise period is much longer than the channel height and spanwise period, and bulk diffusion is sufficiently strong for cross-channel concentration gradients to be small. By combining long-wave and homogenisation theories, we derive an unsteady advection–diffusion equation for surfactant-flux transport over the length of the channel, which is coupled to a quasi-steady advection–diffusion equation for surfactant transport over individual plastrons. As diffusion over the length of the channel is typically small, the surfactant flux is governed by a nonlinear wave equation. In the fundamental case of the transport of a bolus of surfactant, we predict its propagation speed and describe its nonlinear evolution via interaction with the SHS. The propagation speed can fall below the average streamwise velocity as the surfactant adsorbs and rigidifies the plastrons. Smaller concentrations of surfactant are advected faster than larger ones, so that wave-steepening effects can lead to shock formation in the surfactant-flux distribution. Our asymptotic results reveal how unsteady surfactant transport can affect the spatio–temporal evolution of the slip velocity, drag reduction and effective slip length in SHS channels.more » « less
-
Recent experimental and computational investigations have shown that trace amounts of surfactants, unavoidable in practice, can critically impair the drag reduction of superhydrophobic surfaces (SHSs), by inducing Marangoni stresses at the air–liquid interface. However, predictive models for realistic SHS geometries do not yet exist, which has limited the understanding and mitigation of these adverse surfactant effects. To address this issue, we derive a model for laminar, three-dimensional flow over SHS gratings as a function of geometry and soluble surfactant properties, which together encompass 10 dimensionless groups. We establish that the grating lengthgis the key geometric parameter and predict that the ratio between actual and surfactant-free slip increases withg2. Guided by our model, we perform synergistic numerical simulations and microfluidic experiments, finding good agreement with the theory as we vary surfactant type and SHS geometry. Our model also enables the estimation, based on velocity measurements, of a priori unknown properties of surfactants inherently present in microfluidic systems. For SHSs, we show that surfactant effects can be predicted by a single parameter, representing the ratio between the grating length and the interface length scale beyond which the flow mobilizes the air–water interface. This mobilization length is more sensitive to the surfactant chemistry than to its concentration, such that even trace-level contaminants may significantly increase drag if they are highly surface active. These findings advance the fundamental understanding of realistic interfacial flows and provide practical strategies to maximize superhydrophobic drag reduction.more » « less
-
Abstract We experimentally studied the effect of gas flow rateQon the bubble formation on a superhydrophobic surface (SHS). We variedQin the range of 0.001 < Q/Qcr < 0.35, whereQcris the critical value for a transition from the quasi‐static regime to the dynamic regime. The bubble geometrical parameters and forces acting on the bubble were calculated. We found that asQincrease, the bubble detached volume (Vd) increased. After proper normalization, the relationship betweenVdandQgenerally agreed with those observed for bubbles detaching from hydrophilic and hydrophobic surfaces. Furthermore, we found thatQhad a minor impact on bubble shape and the duration of bubble necking due to the negligible momentum of injected gas compared to surface tension and hydrostatic pressure. Lastly, we explained the primary reason for the largerVdat higher flow rates, which was increased bubble volume during the necking process. Our results enhanced the fundamental understanding of bubble formation on complex surfaces and could provide potential solutions for controlling bubble generation and extending the application of SHS for drag reduction, anti‐fouling, and heat and mass transfer enhancement.more » « less
-
Abstract Gas bubbles bursting at the sea surface produce drops, which contribute to marine aerosols. The contamination or enrichment of water by surface‐active agents, of biological or anthropogenic origin, has long been recognized as affecting the bubble bursting processes and the spray composition. However, despite an improved understanding of the physics of a single bursting event, a quantitative understanding of the role of the physico‐chemical conditions on assemblies of bursting bubbles remains elusive. We present experiments on the drop production by millimetric, collective bursting bubbles, under varying surfactant concentration and bubble density. We demonstrate that the production of supermicron droplets (with radius larger than 35 μm) is non‐monotonic as the surfactant concentration increases. The bursting efficiency is optimal for short‐lived, sparsely distributed and non‐coalescing bubbles. We identify the combined role of contamination on the surface bubble arrangement and the modification of the jet drop production process in the bursting efficiency.more » « less
An official website of the United States government
