skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Binary stellar evolution yields in galactic chemical evolution calculations
Context.Galactic chemical evolution (GCE) models aim to bring together stellar yields and galactic evolution models to make predictions for the chemical evolution of real stellar environments. Until recently, stellar yields accounting for binary stellar evolution were unavailable, leading to an inability for GCE calculations to account for most binary stellar evolution effects. Fortunately, effective stellar yields that account for binary stellar evolution at a population level can be pre-computed and then used as if they were single yields. Aims.We present a framework for the computation of effective stellar yields that accounts for a mixed population of binary and single stars under an adjustable mix of binary evolution settings: the binary fraction, the accretion efficiencies of winds, Roche-lobe overflow, and supernovae. We emphasise the critical need for more complete yield coverage of the binary nucleosynthesis and evolution, without which the ability to make accurate predictions on the true role of binarity on GCE calculations is hamstrung. We also provide clear guidelines for future stellar modelling works to ensure their results are maximally useful to the wider community. Methods.We compute effective stellar yields using detailed binary stellar yields accounting for binary induced mass-loss from a solar-metallicity donor star. We study the effect of varying the binary mixture and accretion efficiencies, and consider a range of models for the treatment of accreted material on the secondary in detail. Results.In the absence of detailed binary yields for the secondary, we put forth a model for the composition of accreted material that preserves the signature of the primary’s nuclear processing within the post-mass-transfer secondary yields. This model includes special treatment for isotopes of the light elements Li, Be, and B and accreted radioisotopes. Among the binary parameters, we find that the binary fraction, which determines the ratio of binary and single star systems, has the most significant effect on the effective stellar yields, with widespread impact across most isotopes. In contrast, varying the accretion efficiencies produces comparatively minor changes. We also find that the binary fraction has a significant influence on the logarithmic elemental abundance ratios relative to H present in the effective yield; this impact is the largest for the lower-mass primaries. Conclusions.Comprehensive coverage of binary systems is essential for advancing our understanding of the role of binary stellar evolution in galactic chemical evolution. Priority areas include low-mass stellar evolution, binary mergers, and supernova yields coupled with the evolution of their binary progenitors with nuclear post-processing. The low-metallicity regime is also largely unexplored, offering great opportunity for novel and impactful research in this area.  more » « less
Award ID(s):
1927130
PAR ID:
10649167
Author(s) / Creator(s):
;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
701
ISSN:
0004-6361
Page Range / eLocation ID:
A177
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.Although current observations indicate that there are two distinct sequences of disk stars in the [α/M] versus [M/H] parameter space, further complexity is evident in the chemical makeup of the Milky Way and consequently suggests a complicated evolutionary history. Aims.We developed two-infall galactic chemical evolution (GCE) models consistent with the Galactic chemical map. Methods.We obtained new GCE models simulating the chemical evolution of the Milky Way, as constrained by a golden sample of 394 000 stellar abundances of the Milky Way Mapper survey from data release 19 of SDSS-V. The separation between the chemical thin and thick disks was defined using [Mg/M]. We used the chemical evolution environmentOMEGA+combined with Levenberg-Marquardt (LM) and bootstrapping algorithms for the optimization and error estimation. We simulated the entire Galactic disk and considered six galactocentric regions, allowing for a more detailed analysis of the formation of the inner, middle, and outer Galaxy. We investigated the evolution ofα, odd-Z, and iron-peak elements, covering 15 species altogether. Results.The chemical thin and thick disks are separated by Mg observations, which the otherα-elements show similar trends with, while odd-Z species demonstrate different patterns as functions of metallicity. In the inner Galactic disk regions, the locus of the low-Mg sequence is gradually shifted toward higher metallicity, while the high-Mg phase is less populated. The best-fit GCE models show a well-defined peak in the rate of the infalling matter as a function of the Galactic age, confirming a merger event about 10 Gyr ago. We show that the timescale of gas accretion, the exact time of the second infall and the ratio between the surface mass densities associated with the second infall event and the formation event vary with the distance from the Galactic center. According to the models, the disk was assembled within a timescale of (0.32±0.02) Gyr during a primary formation phase, followed by an increasing accretion rate over a (0.55±0.06) Gyr-timescale and a relaxation phase that lasted (2.86±0.70) Gyr, with a second peak seen for the infall rate at (4.13±0.19) Gyr. Conclusions.Our best Galaxy evolution models are consistent with an inside-out formation scenario of the Milky Way disk and in agreement with the findings of recent chemodynamical simulations. 
    more » « less
  2. ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations. 
    more » « less
  3. Abstract Spectroscopic studies of elliptical galaxies show that their stellar population ages, mean metallicity, andαenhancement traced by [Mg/Fe] all increase with galaxy stellar mass or velocity dispersion. We use one-zone galactic chemical evolution (GCE) models with a flexible star formation history (SFH) to model the age, [Mg/H], and [Mg/Fe] inferred from simple stellar population (SSP) fits to observed ellipticals atz∼ 0 andz∼ 0.7. We show that an SSP fit to the spectrum computed from a full GCE model gives ages and abundances close to the light-weighted, logarithmically averaged values of the composite stellar population, 〈age〉, 〈[Mg/H]〉, and 〈[Mg/Fe]〉. With supernova Mg and Fe yields fixed to values motivated by Milky Way stellar populations, we find that predicted 〈[Mg/H]〉–〈age〉 and 〈[Mg/Fe]〉–〈age〉 relations are surprisingly insensitive to SFH parameters: Older galaxies have higher 〈[Mg/Fe]〉, but the detailed form of the SFH has limited impact. The star formation efficiency (SFE) and outflow efficiency affect the early and late evolution of 〈[Mg/H]〉, respectively; explaining observed trends requires higher SFE and lower outflows in more massive galaxies. With core-collapse supernova yields calibrated to the plateau [Mg/Fe]cc≈ 0.45 observed in many Milky Way studies, our models underpredict the observed 〈[Mg/Fe]〉 ratios of ellipticals by 0.05–0.1 dex. Increasing the core-collapse yield ratio to [Mg/Fe]cc= 0.55 improves the agreement, though the models remain below the data. We discuss potential resolutions of this discrepancy, including the possibility that many ellipticals terminate their star formation with a self-enriching, terminating burst that reduces the light-weighted age and boosts 〈[Mg/Fe]〉. 
    more » « less
  4. ABSTRACT We examine the galactic chemical evolution (GCE) of $^4$He in one-zone and multizone models, with particular attention to theoretical predictions of and empirical constraints on initial mass fraction (IMF)-averaged yields. Published models of massive star winds and core collapse supernovae span a factor of 2–3 in the IMF-averaged $^4$He yield, $$y\mathrm{_{He}^{CC}}$$. Published models of intermediate mass, asymptotic giant branch (AGB) stars show better agreement on the IMF-averaged yield, $$y\mathrm{_{He}^{AGB}}$$, and they predict that more than half of this yield comes from stars with $$M=4{\!-\!}8\, \mathrm{ M}_\odot$$, making AGB $^4$He enrichment rapid compared to Fe enrichment from Type Ia supernovae. Although our GCE models include many potentially complicating effects, the short enrichment time delay and mild metallicity dependence of the predicted yields makes the results quite simple: across a wide range of metallicity and age, the non-primordial $^4$He mass fraction $$\Delta Y = Y-Y_{\mathrm{P}}$$ is proportional to the abundance of promptly produced $$\alpha$$-elements such as oxygen, with $$\Delta Y/Z_{\mathrm{O}}\approx (y\mathrm{_{He}^{CC}}+y\mathrm{_{He}^{AGB}})/y\mathrm{_{O}^{CC}}$$. Reproducing solar abundances with our fiducial choice of the oxygen yield $$y\mathrm{_{O}^{CC}}=0.0071$$ implies $$y\mathrm{_{He}^{CC}}+y\mathrm{_{He}^{AGB}}\approx 0.022$$, i.e. $$0.022\,\mathrm{ M}_\odot$$ of net $^4$He production per solar mass of star formation. Our GCE models with this yield normalization are consistent with most available observations, though the implied $$y\mathrm{_{He}^{CC}}$$ is low compared to most of the published massive star yield models. More precise measurements of $$\Delta Y$$ in stars and gas across a wide range of metallicity and [$$\alpha$$/Fe] ratio could test our models more stringently, either confirming the simple picture suggested by our calculations or revealing surprises in the evolution of the second most abundant element. 
    more » « less
  5. Abstract Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of107Pd,135Cs, and182Hf, which are produced byslowneutron captures (thes-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using theOMEGA+galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-lifeτof the SLR to the average length of time between the formations of AGB progenitorsγ, we calculate timescales relevant for the birth of the Sun. Ifτ/γ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted107Pd/108Pd,135Cs/133Cs, and182Hf/180Hf ratios to their respective ESS ratios. The predicted107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of107Pd and108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. Ifτ/γ≲ 0.3, we calculate instead the time (TLE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2M,Z= 0.01 Monash model we find a self-consistent solution ofTLE= 25.5 Myr. 
    more » « less