skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: First Measurement of νe and ν¯e Charged-Current Single Charged-Pion Production Differential Cross Sections on Argon Using the MicroBooNE Detector
Understanding electron neutrino interactions is crucial for measurements of neutrino oscillations and searches for new physics in neutrino experiments. We present the first measurement of the flux-averaged ν e + ν ¯ e charged-current single charged-pion production cross section on argon using the MicroBooNE detector and data from the NuMI neutrino beam. The total cross section is measured to be [ 0.93 ± 0.13 ( stat ) ± 0.27 ( syst ) ] × 10 39 cm 2 / nucleon at a mean ν e + ν ¯ e energy of 730 MeV. Differential cross sections are also reported in electron energy, electron and pion angles, and electron-pion opening angle.  more » « less
Award ID(s):
2209601 2047665
PAR ID:
10649231
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review Letters
Volume:
135
Issue:
6
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We measure the complete set of angular coefficients J i for exclusive B ¯ D * ν ¯ decays ( = e , μ ). Our analysis uses the full 711 fb 1 Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the B ¯ D * transition and the Cabibbo-Kobayashi-Maskawa matrix element | V cb | . Using recent lattice QCD calculations for the hadronic form factors, we find | V cb | = ( 40.7 ± 0.7 ) × 10 3 using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter w and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024 
    more » « less
  2. The first results of the study of high-energy electron neutrino ( ν e ) and muon neutrino ( ν μ ) charged-current interactions in the FASER ν emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the FASER ν volume was analyzed after exposure to 9.5 fb 1 of s = 13.6 TeV p p data. Four (eight) ν e ( ν μ ) interaction candidate events are observed with a statistical significance of 5.2 σ ( 5.7 σ ). This is the first direct observation of ν e interactions at a particle collider and includes the highest-energy ν e and ν μ ever detected from an artificial source. The interaction cross section per nucleon σ / E ν is measured over an energy range of 560–1740 GeV (520–1760 GeV) for ν e ( ν μ ) to be ( 1.2 0.7 + 0.8 ) × 10 38 cm 2 GeV 1 [ ( 0.5 ± 0.2 ) × 10 38 cm 2 GeV 1 ], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges. Published by the American Physical Society2024 
    more » « less
  3. We search for the rare decay B + K + ν ν ¯ in a 362 fb 1 sample of electron-positron collisions at the ϒ ( 4 S ) resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying B meson in ϒ ( 4 S ) B B ¯ events to suppress background from other decays of the signal B candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying B meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the B + K + ν ν ¯ branching fraction of [ 2.7 ± 0.5 ( stat ) ± 0.5 ( syst ) ] × 10 5 and [ 1.1 0.8 + 0.9 ( stat ) 0.5 + 0.8 ( syst ) ] × 10 5 , respectively. Combining the results, we determine the branching fraction of the decay B + K + ν ν ¯ to be [ 2.3 ± 0.5 ( stat ) 0.4 + 0.5 ( syst ) ] × 10 5 , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024 
    more » « less
  4. The ratio of branching fractions R ( D * ) = B ( B ¯ D * τ ν ¯ τ ) / B ( B ¯ D * ν ¯ ) , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of 189 fb 1 at the SuperKEKB asymmetric-energy e + e collider. Data is collected at the ϒ ( 4 S ) resonance, and one B meson in the ϒ ( 4 S ) B B ¯ decay is fully reconstructed in hadronic decay modes. The accompanying signal B meson is reconstructed as B ¯ D * τ ν ¯ τ using leptonic τ decays. The normalization decay, B ¯ D * ν ¯ , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields R ( D * ) = 0.262 0.039 + 0.041 ( stat ) 0.032 + 0.035 ( syst ) . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024 
    more » « less
  5. Experimental bounds on the neutrino lifetime depend on the nature of the neutrinos and the details of the potentially new physics responsible for neutrino decay. In the case where the decays involve active neutrinos in the final state, the neutrino masses also qualitatively impact how these manifest themselves experimentally. In order to further understand the impact of nonzero neutrino masses, we explore how observations of solar neutrinos constrain a very simple toy model. We assume that neutrinos are Dirac fermions and there is a new massless scalar that couples to neutrinos such that a heavy neutrino— ν 2 with mass m 2 —can decay into a lighter neutrino— ν 1 with mass m 1 —and a massless scalar. We find that the constraints on the new physics coupling depend, sometimes significantly, on the ratio of the daughter-to-parent neutrino masses and that, for large-enough values of the new physics coupling, the “dark side” of the solar neutrino parameter space— sin 2 θ 12 0.7 —provides a reasonable fit to solar neutrino data, if only B 8 or Be 7 neutrino data alone are considered, but no allowed region is found in the combined analysis. Our results generalize to other neutrino-decay scenarios, including those that mediate ν 2 ν 1 ν ¯ 3 ν 3 when the neutrino mass ordering is inverted mass and m 2 > m 1 m 3 , the mass of ν 3 . Published by the American Physical Society2024 
    more » « less