skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 12, 2026

Title: Early life adversity shapes life history trade-offs between growth and reproduction in free-ranging rhesus macaques
Abstract Life history theory predicts that organisms allocate resources across physiological processes to maximize fitness. Under this framework, early life adversity (ELA)—which often limits energetic capital—could shape investment in growth and reproduction, as well as trade-offs between them, ultimately contributing to variation in evolutionary fitness. Using long-term demographic, behavioral, and physiological data for 2,100 females from a non-human primate population, we tested whether naturally-occurring ELA influences investment in the competing physiological demands of growth and reproduction. By analyzing ELA, growth, and reproduction in the same individuals, we also assessed whether adversity intensifies trade-offs between life history domains. We found that ELA influenced life history patterns, and was associated with modified growth, delayed reproductive maturity, and small adult body size. Different types of ELA sometimes had distinct reproductive outcomes—e.g., large group size was linked to faster reproductive rates, while low maternal rank predicted slower ones. Adversity also amplified trade-offs between growth and reproduction: small body size was a stronger predictor of delayed and reduced reproductive output in females exposed to ELA, compared to those not exposed. Finally, we examined how traits modified by ELA related to lifetime reproductive success. Across the population, starting reproduction earlier and maintaining a moderate reproductive rate conferred the greatest number of offspring surviving to reproductive maturity. These findings suggest that ELA impacts key life history traits as well as relationships between them, and can constrain individuals from adopting the most optimal reproductive strategy. Significance StatementEarly life adversity (ELA) can have lasting effects on evolutionary fitness (e.g., the number of surviving offspring an animal produces); however, the paths connecting ELA to fitness—for example by influencing growth, reproductive timing or rate, or trade-offs between these processes—remain unclear. Leveraging long-term behavioral, physiological, and demographic data from 2,100 female rhesus macaques, we found that ELA-exposed females exhibited growth and reproductive schedules associated with less-optimal lifetime fitness outcomes. Further, ELA intensified trade-offs between growth and reproduction, suggesting that affected individuals face steeper energetic constraints. Our findings highlight the long-lasting impacts of ELA on traits of evolutionary and biomedical importance in a non-human primate model with relevance to humans.  more » « less
Award ID(s):
2313953
PAR ID:
10649280
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infection can cause hosts to drastically alter their investment in key life‐history traits of reproduction and defence. Infected individuals are expected to increase investment in defence (e.g., by increasing immune function) and, due to trade‐offs, investment in other traits (e.g., current reproduction) should decrease. However, the terminal investment hypothesis postulates that decreased lifespan due to infection and the associated reduction in the expectation for future offspring will favour increased investment towards current reproduction. Variation in intrinsic condition will likely influence shifts in reproductive investment post‐infection, but this is often not considered in such assessments. For example, the extent of inbreeding can significantly impact an individual's lifetime fitness and may influence its reproductive behaviour following a threat of infection. Here, we investigated the effects of inbreeding status on an individual's reproductive investment upon infection, including the propensity to terminally invest. Male crickets (Gryllodes sigillatus) from four genetically distinct inbred lines and one outbred line were subjected to a treatment from an increasing spectrum of simulated infection cue intensities, using heat‐killed bacteria. We then measured reproductive effort (calling effort), survival and immune function (antibacterial activity, circulating haemocytes and haemocyte microaggregations). Inbred and outbred males diverged in how they responded to a low‐dose infection cue: relative to unmanipulated males, outbred males decreased calling effort, whereas inbred males increased calling effort. Moreover, we found that inbred males exhibited higher antibacterial activity and numbers of circulating haemocytes compared with outbred males. These results suggest that an individual's inbreeding status may have consequences for context‐dependent shifts in reproductive strategies, such as those triggered by infection. 
    more » « less
  2. Synopsis Reproduction and self-maintenance are energetically costly activities involved in classic life history trade-offs. However, few studies have measured the responses of wild organisms to simultaneous changes in reproductive and self-maintenance costs, which may have interactive effects. In free-living female Barn Swallows (Hirundo rustica), we simultaneously manipulated reproductive costs (by adding or removing two nestlings) and self-maintenance costs (by attaching a ∼1 g weight in the form of a GPS tag to half of our study birds) and measured mass, immune status, blood glucose, feather growth, and reproductive output (likelihood of a second clutch, number of eggs, and time between clutches). GPS tags allowed us to analyze how movement range size affected response to brood size manipulation. Tagging altered females’ immune function as evidenced by an elevated heterophil to lymphocyte (H:L) ratio, but all females were equally likely to lay more eggs. There was no evidence of interactive effects of the tagging and brood size treatment. Range size was highly variable, and birds with large ranges grew feathers more slowly, but analyzing the effect of brood size manipulation while accounting for variation in range size did not result in any physiological response. Our results support the theoretical prediction that short-lived vertebrates do face a trade-off between reproduction and self-maintenance and, when faced with increased costs, tend to preserve investment in reproduction at the expense of parental condition. This experiment also helps us to understand how movement patterns may be relevant to life history trade-offs in wild birds. 
    more » « less
  3. Abstract Across diverse taxa, offspring from older mothers have decreased lifespan and fitness. Little is known about the extent to which maternal age effects vary among genotypes for a given species, however, except for studies of a few arthropod species. To investigate the presence and degree of intraspecific variability in maternal age effects, we compared lifespan, reproductive schedule, and lifetime reproductive output of offspring produced by young, middle‐aged, and old mothers in four strains of rotifers in theBrachionus plicatilisspecies complex. We found significant variability among strains in the magnitude and direction of maternal age effects on offspring life history traits. In one strain, offspring of young mothers lived 20% longer than offspring of old mothers, whereas there were no significant effects of maternal age on lifespan for other strains. Depending on strain, advanced maternal age had positive effects, negative effects, or no effect on lifetime reproductive output. Across strains, older mothers produced offspring that had higher maximum daily reproduction early in life. The effects of maternal age on offspring vital rates could not be explained by changes in trade‐offs between lifespan and reproduction. This study documents intraspecific variability in maternal age effects in an additional clade. Investigating intraspecific variability is critical for understanding the ubiquity of maternal age effects and their role in the evolution of life history and aging. 
    more » « less
  4. Abstract Seasonal changes in reproduction have been described for many taxa. As reproductive seasons progress, females often shift from greater energetic investment in many small offspring towards investing less total energy into fewer, better provisioned (i.e. larger) offspring. The underlying causes of this pattern have not been assessed in many systems.Two primary hypotheses have been proposed to explain these patterns. The first is an adaptive hypothesis from life‐history theory: early offspring have a survival advantage over those produced later. Accordingly, selection favours females that invest in offspring quantity early in the season and offspring quality later. The second hypothesis suggests these patterns are not intrinsic but result from passive responses to seasonal changes in the environment experienced by reproducing females (i.e. maternal environment).To disentangle the causes underlying this pattern, which has been reported in brown anole lizards (Anolis sagrei), we performed complementary field and laboratory studies. The laboratory study carefully controlled maternal environments and quantified reproductive patterns throughout the reproductive season for each female. The field study measured similar metrics from free ranging lizards across an entire reproductive season.In the laboratory, females increased relative effort per offspring as the reproductive season progressed; smaller eggs were laid earlier, larger eggs were laid later. Moreover, we observed significant among‐individual variation in seasonal changes in reproduction, which is necessary for traits to evolve via natural selection. Because these patterns consistently emerge under controlled laboratory conditions, they likely represent an intrinsic and potentially adaptive adjustment of reproductive effort as predicted by life‐history theory.The field study revealed similar trends, further suggesting that intrinsic patterns observed in the laboratory are strong enough to persist despite the environmental variability that characterizes natural habitats. The observed patterns are indicative of an adaptive seasonal shift in parental investment in response to a deteriorating offspring environment: allocating greater resources to late‐produced offspring likely enhances maternal fitness. 
    more » « less
  5. Abstract Understanding the evolutionary mechanisms underlying the maintenance of individual differences in behavior and physiology is a fundamental goal in ecology and evolution. The pace‐of‐life syndrome hypothesis is often invoked to explain the maintenance of such within‐population variation. This hypothesis predicts that behavioral traits are part of a suite of correlated traits that collectively determine an individual's propensity to prioritize reproduction or survival. A key assumption of this hypothesis is that these traits are underpinned by genetic trade‐offs among life‐history traits: genetic variants that increase fertility, reproduction and growth might also reduce lifespan. We performed a systematic literature review and meta‐analysis to summarize the evidence for the existence of genetic trade‐offs between five key life‐history traits: survival, growth rate, body size, maturation rate, and fertility. Counter to our predictions, we found an overall positive genetic correlation between survival and other life‐history traits and no evidence for any genetic correlations between the non‐survival life‐history traits. This finding was generally consistent across pairs of life‐history traits, sexes, life stages, lab vs. field studies, and narrow‐ vs. broad‐sense correlation estimates. Our study highlights that genetic trade‐offs may not be as common, or at least not as easily quantifiable, in animals as often assumed. 
    more » « less