Abstract We present a sample of 398 galaxies with ionized gas outflow signatures in their spectra from the Galaxy and Mass Assembly Survey Data Release 4, including 45 low-mass galaxies with stellar massesM* < 1010M⊙. We assemble our sample by systematically searching for the presence of a second velocity component in the [O iii]λλ4959, 5007 doublet emission line in 39,612 galaxies with redshiftsz < 0.3. The host galaxies are classified using the Baldwin–Phillips–Terlevich diagram, with ~89% identified as active galactic nuclei (AGNs) and composites and 11% as star-forming (SF) galaxies. The outflows are typically faster in AGNs with a median velocity of 936 km s−1compared to 655 km s−1in the SF objects. Of particular interest are the 45 galaxies in the low-mass range, of which a third are classified as AGNs/composites. The outflows from the low-mass AGNs are also faster and more blueshifted compared to those in the low-mass SF galaxies. This indicates that black hole outflows can affect host galaxies in the low-mass range and that AGN feedback in galaxies withM* < 1010M⊙should be considered in galaxy evolution models.
more »
« less
Shocked POststarburst Galaxy Survey. IV. Outflows in Shocked Poststarburst Galaxies Are Not Responsible for Quenching
Abstract Shocked POstarburst Galaxies (SPOGs) exhibit both emission lines suggestive of shock-heated gas and poststarburst-like stellar absorption, resulting in a unique subset for galaxy evolution studies. We have observed 77 galaxies that fulfilled the SPOG criteria selection using the DeVeny Spectrograph on the Lowell Discovery Telescope. Our long-slit minor axis spectra detect Hαand [OIII] in some SPOGs out to 6 kpc above the galactic plane. We find extraplanar ionized gas in 31 targets of our sample overall. Using their internal and external kinematics, we argue that 22 galaxies host outflows with ionized gas masses ranging from 102M⊙to 105M⊙. The rest are likely extended diffuse ionized gas. A positive correlation exists between active galactic nuclei (AGN) luminosity and the extraplanar gas extent, velocity dispersion, and mass—suggesting that the AGN may indeed drive the outflows detected in AGN hosts. The low masses of the extraplanar gas suggest that these outflows are not depleting each galaxy’s gas reserves. The outflows, therefore, are not likely a significant quenching mechanism in these SPOGs.
more »
« less
- Award ID(s):
- 2009416
- PAR ID:
- 10649739
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 979
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 94
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Effectively finding and identifying active galactic nuclei (AGNs) in dwarf galaxies is an important step in studying black hole formation and evolution. In this work, we examine four mid-infrared (IR)-selected AGN candidates in dwarf galaxies with stellar masses betweenM⋆ ~ 108and 109M⊙and find that the galaxies are host to nuclear star clusters (NSCs) that are notably rare in how young and massive they are. We perform photometric measurements on the central star clusters in our target galaxies using Hubble Space Telescope optical and near-IR imaging and compare their observed properties to models of stellar population evolution. We find that these galaxies are host to very massive (~107M⊙), extremely young (≲8 Myr), and dusty (0.6 ≲ Av ≲ 1.8) NSCs. Our results indicate that these galactic nuclei have ongoing star formation, are still at least partially obscured by clouds of gas and dust, and are most likely producing the extremely red AGN-like mid-IR colors. Moreover, prior work has shown that these galaxies do not exhibit X-ray or optical AGN signatures. Therefore, we recommend caution when using mid-IR color–color diagnostics for AGN selection in dwarf galaxies, since, as directly exemplified in this sample, they can be contaminated by massive star clusters with ongoing star formation.more » « less
-
Abstract The properties of warm-hot gas around ∼L*galaxies can be studied with absorption lines from highly ionized metals. We predict Neviiicolumn densities from cosmological zoom-in simulations of halos with masses in ∼1012and ∼1013M☉from the Feedback in Realistic Environments (FIRE) project. Neviiitraces the volume-filling, virial-temperature gas in ∼1012M☉halos. In ∼1013M☉halos the Neviiigas is clumpier, and biased toward the cooler part of the warm-hot phase. We compare the simulations to observations from the COS Absorption Survey of Baryon Harbors (or CASBaH) and COS Ultraviolet Baryon Survey (or CUBS). We show that when inferring halo masses from stellar masses to compare simulated and observed halos, it is important to account for the scatter in the stellar-mass–halo-mass relation, especially atM⋆≳ 1010.5M☉. Median Neviiicolumns in the fiducial FIRE-2 model are about as high as observed upper limits allow, while the simulations analyzed do not reproduce the highest observed columns. This suggests that the median Neviiiprofiles predicted by the simulations are consistent with observations, but that the simulations may underpredict the scatter. We find similar agreement with analytical models that assume a product of the halo gas fraction and metallicity (relative to solar) ∼0.1, indicating that observations are consistent with plausible circumgalactic medium temperatures, metallicities, and gas masses. Variants of the FIRE simulations with a modified supernova feedback model and/or active galactic nuclei feedback included (as well as some other cosmological simulations from the literature) more systematically underpredict Neviiicolumns. The circumgalactic Neviiiobservations therefore provide valuable constraints on simulations that otherwise predict realistic galaxy properties.more » « less
-
Abstract High-velocity outflows are ubiquitous in compact, massive (M*∼ 1011M⊙),z∼ 0.5 galaxies with extreme star formation surface densities (ΣSFR∼ 2000M⊙yr−1kpc−2). We have previously detected and characterized these outflows using Mgiiabsorption lines. To probe their full extent, we present Keck/KCWI integral field spectroscopy of the [Oii] and Mgiiemission nebulae surrounding all of the 12 galaxies in this study. We find that [Oii] is more effective than Mgiiin tracing low surface brightness, extended emission in these galaxies. The [Oii] nebulae are spatially extended beyond the stars, with radial extentR90between 10 and 40 kpc. The nebulae exhibit nongravitational motions, indicating galactic outflows with maximum blueshifted velocities ranging from −335 to −1920 km s−1. The outflow kinematics correlate with the bursty star formation histories of these galaxies. Galaxies with the most recent bursts of star formation (within the last <3 Myr) exhibit the highest central velocity dispersions (σ≳ 400 km s−1), while the oldest bursts have the lowest-velocity outflows. Many galaxies exhibit both high-velocity cores and more extended, slower-moving gas indicative of multiple outflow episodes. The slower, larger outflows occurred earlier and have decelerated as they propagate into the circumgalactic medium and mix on timescales ≳50 Myr.more » « less
-
Abstract While stellar processes are believed to be the main source of feedback in dwarf galaxies, the accumulating discoveries of active galactic nuclei (AGN) in dwarf galaxies over recent years arouse the interest to also consider AGN feedback in them. Fast, AGN-driven outflows, a major mechanism of AGN feedback, have indeed been discovered in dwarf galaxies and may be powerful enough to provide feedback to their dwarf hosts. In this paper, we search for outflows traced by the blueshifted ultraviolet absorption features in three dwarf galaxies with AGN from the sample examined in our previous ground-based study. We confirm outflows traced by blueshifted absorption features in two objects and tentatively detect an outflow in the third object. In one object where the outflow is clearly detected in multiple species, photoionization modeling suggests that this outflow is located ∼0.5 kpc from the AGN, implying a galactic-scale impact. This outflow is much faster and possesses a higher kinetic energy outflow rate than starburst-driven outflows in sources with similar star formation rates, and is likely energetic enough to provide negative feedback to its host galaxy as predicted by simulations. Much broader (∼4000 km s−1) absorption features are also discovered in this object, which may have the same origin as that of broad absorption lines in quasars. Additionally, strong Heiiλ1640 emission is detected in both objects where the transition falls in the wavelength coverage and is consistent with an AGN origin. In one of these two objects, a blueshifted Heiiλ1640 emission line is clearly detected, likely tracing a highly ionized AGN wind.more » « less
An official website of the United States government

