Cyber-physical systems (CPS) increasingly require real-time, high bandwidth data communication and processing. To address this, Time Sensitive Networking (TSN) provides latency-bounded data trans- mission at one or more gigabits-per-second throughput. However, it does not commonly connect directly to I/O devices, such as sensors and ac- tuators. In contrast, Universal Serial Bus (USB) is ubiquitous for device I/O, but has yet to be widely adopted for host-to-host networking. This paper considers the use of a common USB software stack for both device I/O and host-to-host communication. We compare against a sys- tem using USB for device I/O and TSN for host-level networking. Our findings show that a unified approach using USB results in reduced soft- ware complexity, simplified bus coordination, and more effective miti- gation of priority inversion when transferring data across multiple bus segments. Experiments show that end-to-end latency is within expected delay bounds, and is reduced if the same USB software stack is used for all communication with a given host. This suggests that bridging chal- lenges exist in current systems, which are solved by either extending a high-bandwidth bus such as TSN to support device I/O, or enhancing USB with improved networking capabilities.
more »
« less
This content will become publicly available on November 5, 2026
Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems
Cyber-physical systems (CPS) increasingly require real-time, high bandwidth data communication and processing. To address this, Time Sensitive Networking (TSN) provides latency-bounded data transmission at one or more gigabits-per-second throughput. However, it does not commonly connect directly to I/O devices, such as sensors and actuators. In contrast, Universal Serial Bus (USB) is ubiquitous for device I/O, but has yet to be widely adopted for host-to-host networking. This paper considers the use of a common USB software stack for both device I/O and host-to-host communication. We compare against a system using USB for device I/O and TSN for host-level networking. Our findings show that a unified approach using USB results in reduced software complexity, simplified bus coordination, and more effective mitigation of priority inversion when transferring data across multiple bus segments. Experiments show that end-to-end latency is within expected delay bounds, and is reduced if the same USB software stack is used for all communication with a given host. This suggests that bridging challenges exist in current systems, which are solved by either extending a high-bandwidth bus such as TSN to support device I/O, or enhancing USB with improved networking capabilities.
more »
« less
- Award ID(s):
- 2007707
- PAR ID:
- 10649899
- Publisher / Repository:
- Proceedings of the 33rd International Conference on Real-Time Networks and Systems (RTNS)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multicore PC-class embedded systems present an opportunity to consolidate separate microcontrollers as software-defined functions. For instance, an automotive system with more than 100 electronic control units (ECUs) could be replaced with one or, at most, several multicore PCs running software tasks for chassis, body, powertrain, infotainment, and advanced driver assistance system (ADAS) services. However, a key challenge is how to handle real-time device input and output (I/O) and host-level networking as part of sensor data processing and control. A traditional microcontroller would commonly feature one or more Controller Area Network (CAN) buses for real-time I/O. CAN buses are usually absent in PCs, which instead feature higher bandwidth Universal Serial Bus (USB) interfaces. This article shows how to achieve real-time device I/O and host-to-host communication over USB, using suitably written device drivers and a time-aware POSIX-like “tuned pipe” abstraction. This allows developers to establish task pipelines spanning one or more hosts, with end-to-end latency and throughput guarantees for sensor data processing, control, and actuation.more » « less
-
Full-system simulation of computer systems is critical for capturing the complex interplay between various hard-ware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios. In this work, we first demonstrate the limitations of gem5's current network stack in achieving high network bandwidth. Then, we enable a userspace networking stack on gem5. We extend gem5's NIC hardware model and device driver to sup-port userspace device drivers running the DPDK framework. Additionally, we implement a network load generator hardware model in gem5 to generate various traffic patterns and per-form per-packet timestamp and latency measurements without introducing packet loss. We develop a suite of six network-intensive benchmarks for stress testing the host network stack. These applications, based on DPDK, can run on both gem5 and real systems. Our experimental results show that enabling userspace networking improves gem5's network bandwidth by 6.3× compared with the current Linux kernel software stack. We characterize the performance of DPDK benchmarks running on both a real system and gem5, and evaluate the sensitivity of the applications to various system and microarchitecture parameters. This work marks the first step in refactoring the networking subsystem in gem5.more » « less
-
Universal Serial Bus (USB) ports are a ubiquitous feature in computer systems and offer a cheap and efficient way to provide power and data connectivity between a host and peripheral devices. Even with the rise of cloud and off-site computing, USB has played a major role in enabling data transfer between devices. Its usage is especially prevalent in high-security environments where systems are ‘air-gapped’ and not connected to the Internet. However, recent research has demonstrated that USB is not nearly as secure as once thought, with different attacks showing that modified firmware on USB mass storage devices can compromise a host system. While many defenses have been proposed, they require user interaction, advanced hardware support (incompatible with legacy devices), or utilize device identifiers that can be subverted by an attacker. In this paper, we present Time-Print, a novel timing-based fingerprinting method, for identifying USB mass storage devices. We create a fingerprint by timing a series of read operations from different locations on a drive, as the timing variations are unique enough to identify individual USB devices. Time-Print is low overhead, completely software-based, and does not require any extra or specialized hardware. To validate the efficacy of Time-Print, we examine more than 40 USB flash drives and conduct experiments in multiple authentication scenarios. The experimental results show that Time-Print can (1) identify known/unknown brand/model USB devices with greater than 99.5% accuracy, (2) identify seen/unseen devices of the same brand/model with 95% accuracy, and (3) classify USB devices from the same brand/model with an average accuracy of 98.7%.more » « less
-
Cloud visualization and multi-tenant networking provide Infrastructure as a Service (IaaS) provider a new and innovative way to offer the on-demand services to their customers, such as the easy provisioning of new applications and the better resource efficiency and scalability. However, existing data-intensive applications require more powerful processor and computing power, as well as a high bandwidth, low latency and consistent networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of the software virtualization, we propose a new data center network design based on OpenStack, which is a promising cloud operating system solution. Specifically, we map the OpenStack networking services to the hardware switch, and perform hardware-accelerated L2 switch and L3 routing to solve the software limitations, as well as achieve the software-like scalability and flexibility. We designed our prototype system via the Arista Software-Defined-Networking (SDN) switch, and evaluated the performance improvement in terms of the bandwidth and delay using various tools. Our experimental results demonstrate that our datacenter networking solution achieves higher bandwidth, lower latency, and lower CPU utilization of the host server.more » « less
An official website of the United States government
