skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 14, 2026

Title: Reconstructing Deep Ocean Circulation in the Eastern North Atlantic Since the Last Glacial Maximum
Atlantic Meridional Overturning Circulation (AMOC) circulates heat and nutrients within the Atlantic Ocean. As it plays a vital role in regulating climate, precipitation, and productivity, it is imperative to gain a deeper understanding of this system of ocean currents. This endeavor is especially urgent, as recent studies have stressed the potential impact of freshwater inputs due to anthropogenic climate change on the strength of AMOC. In addition to the uncertainty associated with the claim of a slowdown or complete collapse of AMOC in the near future, questions about the geometry of AMOC remain unanswered. For instance, intra-basin variability in North Atlantic paleocirculation (231Pa/230Th) records was observed in Gherardi et al., 2005. However, it was unclear whether different sources of Glacial North Atlantic Intermediate Water (GNAIW) or different overturning depths caused this variability. Reconstructing deep ocean circulation in the eastern North Atlantic using an assortment of geochemical proxies can provide insight into the future state of AMOC, as well as the evolution of its geometry. Here we present records of benthic foraminiferal δ18O and δ13C, and sedimentary 231Pa/230Th (a kinematic proxy for AMOC strength) from International Ocean Discovery Program (IODP) expedition 397, Iberian Margin Paleoclimate, site 1586 (37°37.7108′N, 10°42.6987′W, 4691.4 mbsl). The optimal location and depth of this site allow for a meaningful comparison to available paleocirculation records in order to determine whether AMOC strength varies zonally or with depth. We find that the benthic δ13C, export of 231Pa, and inferred strength of AMOC generally increased from the LGM to the Holocene, with significant decreases during Heinrich events 1 and 2. Additionally, the 231Pa/230Th record at this deep site in the eastern basin was found to vary in a similar pattern as that of a western site of a comparable depth, more closely than that of a shallower, proximal site on the Iberian Margin (Gherardi et al., 2005). This indicates that depth differences are more of a determining factor than zonal differences in establishing AMOC strength, revealing that different overturning depths likely influenced the variability observed between eastern and western Atlantic paleocirculation records more than different GNAIW sources.  more » « less
Award ID(s):
2442513
PAR ID:
10649972
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the threat of rising temperatures, the Atlantic Meridional Overturning Circulation (AMOC) has been predicted to slow down or stop entirely, potentially exacerbating climate dysregulation in the Atlantic region. This project looks to the geologically recent past, to examine how much and in what way Atlantic ocean circulation has fluctuated over the last ~10,000 years. From IODP expedition 397, we processed 33 samples from site U1586, the sediment core at the greatest depth from the Iberian Margin. Stable isotope analysis of benthic foraminifera microfossils found in these sediment cores is a widely used technique for reconstructing past ocean circulation patterns; δ13C is a tracer for water masses, and δ18O is a proxy for sea temperature and land ice coverage. We searched specifically for Cibicidoides wuellerstorfi foraminifera and used mass spectrometry to find their values of δ13C and δ18O throughout the time-series. Our analyses of the stable isotopes generally indicate a warm climate and strong AMOC activity throughout the Holocene. Within the time interval 3.5-2.4 ka, stable oxygen isotope analysis shows a deep water temperature change from warmer to colder conditions. The lowest δ13C value occurs within that time interval; after δ18O values dropped at 3.5 ka, and gradually started increasing, the δ13C decreased significantly at 2.8 ka. The fact that the lowest δ13C value coincides with a 1,000 year period of deep water temperature change shown in the δ18O record suggests a link between climate change and AMOC activity in the past, and supports predictions for the impact that current climate change may have on AMOC in the future. 
    more » « less
  2. Abstract A large part of the variability in the Atlantic meridional overturning circulation (AMOC) and thus uncertainty in its estimates on interannual time scales comes from atmospheric synoptic eddies and mesoscale processes. In this study, a suite of experiments with a 1/12° regional configuration of the MITgcm is performed where low-pass filtering is applied to surface wind forcing to investigate the impact of subsynoptic (<2 days) and synoptic (2–10 days) atmospheric processes on the ocean circulation. Changes in the wind magnitude and hence the wind energy input in the region have a significant effect on the strength of the overturning; once this is accounted for, the magnitude of the overturning in all sensitivity experiments is very similar to that of the control run. Synoptic and subsynoptic variability in atmospheric winds reduce the surface heat loss in the Labrador Sea, resulting in anomalous advection of warm and salty waters into the Irminger Sea and lower upper-ocean densities in the eastern subpolar North Atlantic. Other effects of high-frequency variability in surface winds on the AMOC are associated with changes in Ekman convergence in the midlatitudes. Synoptic and subsynoptic winds also impact the strength of the boundary currents and density structure in the subpolar North Atlantic. In the Labrador Sea, the overturning strength is more sensitive to the changes in density structure, whereas in the eastern subpolar North Atlantic, the role of density is comparable to that of the strength of the East Greenland Current. Significance StatementA key issue in understanding how well the Atlantic meridional overturning circulation is simulated in climate models is determining the impact of synoptic (2–10 days) and subsynoptic (shorter) wind variability on ocean circulation. We find that the greatest impact of wind changes on the strength of the overturning is through changes in energy input from winds to the ocean. Variations in winds have a more modest impact via changes in heat loss over the Labrador Sea, alongside changes in wind-driven surface currents. This study highlights the importance of accurately representing the density in the Labrador Sea, and both the strength and density structure of the East Greenland Current, for the correct representation of overturning circulation in climate models. 
    more » « less
  3. Abstract Carbon isotope minima were a ubiquitous feature in the mid-depth (1.5–2.5 km) Atlantic during Heinrich Stadial 1 (HS1, 14.5–17.5 kyr BP) and the Younger Dryas (YD, 11.6–12.9 kyr BP), with the most likely driver being collapse of the Atlantic Meridional Overturning Circulation (AMOC). Negative carbon isotope anomalies also occurred throughout the surface ocean and atmosphere, but their timing relative to AMOC collapse and the underlying drivers have remained unclear. Here we evaluate the lead-lag relationship between AMOC variability and surface oceanδ13C signals using high resolution benthic and planktonic stable isotope records from two Brazil Margin cores (located at 1.8 km and 2.1 km water depth). In each case, the decrease in benthicδ13C during HS1 leads planktonicδ13C by 800 ± 200 years. Because the records are based on the same samples, the relative timing is constrained by the core stratigraphy. Our results imply that AMOC collapse initiates a chain of events that propagates through the oceanic carbon cycle in less than 1 kyr. Direct comparison of planktonic foraminiferal and atmospheric records implies a portion of the surface oceanδ13C signal can be explained by temperature-dependent equilibration with a13C-depleted atmosphere, with the remainder due to biological productivity, input of carbon from the abyss, or reduced air-sea equilibration. 
    more » « less
  4. The Iberian margin is a well-known source of rapidly accumulating sediment that contains a high-fidelity record of millennial climate variability (MCV) for the late Pleistocene. The late Sir Nicholas (Nick) Shackleton demonstrated that piston cores from the region can be correlated precisely to polar ice cores in both hemispheres. Moreover, the narrow continental shelf off Portugal results in the rapid delivery of terrestrial material to the deep-sea environment, thereby permitting correlation of marine and ice core records to European terrestrial sequences. Few places exist in the world where such detailed marine-ice-terrestrial linkages are possible. The continuity, high sedimentation rates, and fidelity of climate signals preserved in Iberian margin sediments make this region a prime target for ocean drilling. During Integrated Ocean Drilling Program Expedition 339 (Mediterranean Outflow), one of the sites proposed here was drilled to a total depth of 155.9 meters below seafloor in multiple holes. At Site U1385 (the “Shackleton site”) a complete record of hemipelagic sedimentation was recovered for the last 1.45 My corresponding to Marine Isotope Stage 47 with sedimentation rates of 10–20 cm/ky. Preliminary results from Site U1385 demonstrate the great promise of the Iberian margin to yield long records of millennial-scale climate change and land–sea comparisons. International Ocean Discovery Program (IODP) Expedition 397 will extend this remarkable sediment archive through the Pliocene and expand the depth range of available sites by drilling additional sequences in water depths from 1304 to 4686 meters below sea level (mbsl). This depth transect is designed to complement those sites drilled during Expedition 339 (560–1073 mbsl) where sediment was recovered at intermediate water depth under the influence of Mediterranean Outflow Water (MOW). Together, the sites recovered during Expeditions 339 and 397 will constitute a complete depth transect with which to study past variability of all the major subsurface water masses of the eastern North Atlantic. Because most of the mass, thermal inertia, and carbon in the ocean-atmosphere system is contained in the deep ocean, well-placed depth transects in each of the major ocean basins are needed to understand the underlying mechanisms of glacial–interglacial cycles and MCV. We have identified four primary sites (SHACK-4C, SHACK-10B, SHACK-11B, and SHACK-14A) at which multiple holes will be drilled to ensure complete recovery of the stratigraphic sections at each site, ranging in age from the latest Miocene to Holocene. Building on the success of Site U1385 and given the seminal importance of the Iberian margin for paleoclimatology and marine-ice-terrestrial correlations, the cores recovered during Expedition 397 will provide present and future generations of paleoceanographers with the raw material needed to reconstruct the North Atlantic climate at high temporal resolution for the entire Quaternary and Pliocene. 
    more » « less
  5. Abstract Variations in the Atlantic Meridional Overturning Circulation (AMOC) redistribute heat and nutrients, causing pronounced anomalies of temperature and nutrient concentrations in the subsurface ocean. However, exactly how millennial‐scale deglacial AMOC variability influenced the subsurface is debated, and the role of other deglacial forcings of subsurface temperature change is unclear. Here, we present a new deglacial temperature reconstruction, which, with published records, helps assess competing hypotheses for deglacial warming in the upper tropical North Atlantic. Our record provides new evidence of regional subsurface warming in the western tropical North Atlantic within the core of modern Antarctic Intermediate Water (AAIW) during Heinrich Stadial 1 (HS1), an early deglacial interval of iceberg discharge into the North Atlantic. Our results are consistent with model simulations that suggest subsurface heat accumulates in the northern high‐latitude convection regions and along the upper AMOC return path when the AMOC weakens, and with warming due to rising greenhouse gases. Warming of AAIW may have also contributed to warming in the tropics at modern AAIW depths during late HS1. Nutrient andreconstructions from the same site suggest a link between AMOC intensity and the northward extent of AAIW in the northern tropics across the deglaciation and on millennial time scales. However, the timing of the initial deglacial increase in AAIW to the northern tropics is ambiguous. Deglacial trends and variability ofin the upper North Atlantic have likely biased temperature reconstructions based on the elemental composition of calcitic benthic foraminifera. 
    more » « less