skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 19, 2026

Title: Bayesian semiparametric causal inference: Targeted doubly robust estimation of treatment effects
We propose a semiparametric Bayesian methodology for estimating the average treatment effect (ATE) within the potential outcomes framework using observational data with high-dimensional nuisance parameters. Our method introduces a Bayesian debiasing procedure that corrects for bias arising from nuisance estimation and employs a targeted modeling strategy based on summary statistics rather than the full data. These summary statistics are identified in a debiased manner, enabling the estimation of nuisance bias via weighted observables and facilitating hierarchical learning of the ATE. By combining debiasing with sample splitting, our approach separates nuisance estimation from inference on the target parameter, reducing sensitivity to nuisance model specification. We establish that, under mild conditions, the marginal posterior for the ATE satisfies a Bernstein-von Mises theorem when both nuisance models are correctly specified and remains consistent and robust when only one is correct, achieving Bayesian double robustness. This ensures asymptotic efficiency and frequentist validity. Extensive simulations confirm the theoretical results, demonstrating accurate point estimation and credible intervals with nominal coverage, even in high-dimensional settings. The proposed framework can also be extended to other causal estimands, and its key principles offer a general foundation for advancing Bayesian semiparametric inference more broadly.  more » « less
Award ID(s):
2113768
PAR ID:
10650009
Author(s) / Creator(s):
; ;
Publisher / Repository:
arXiv.org
Date Published:
Journal Name:
arXiv.org
Edition / Version:
arXiv preprint arXiv:2511.15904
ISSN:
2331-8422
Page Range / eLocation ID:
1-48
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inference in semi-supervised (SS) settings has gained substantial attention in recent years due to increased relevance in modern big-data problems. In a typical SS setting, there is a much larger-sized unlabeled data, containing only observations of predictors, and a moderately sized labeled data containing observations for both an outcome and the set of predictors. Such data naturally arises when the outcome, unlike the predictors, is costly or difficult to obtain. One of the primary statistical objectives in SS settings is to explore whether parameter estimation can be improved by exploiting the unlabeled data. We propose a novel Bayesian method for estimating the population mean in SS settings. The approach yields estimators that are both efficient and optimal for estimation and inference. The method itself has several interesting artifacts. The central idea behind the method is to model certain summary statistics of the data in a targeted manner, rather than the entire raw data itself, along with a novel Bayesian notion of debiasing. Specifying appropriate summary statistics crucially relies on a debiased representation of the population mean that incorporates unlabeled data through a flexible nuisance function while also learning its estimation bias. Combined with careful usage of sample splitting, this debiasing approach mitigates the effect of bias due to slow rates or misspecification of the nuisance parameter from the posterior of the final parameter of interest, ensuring its robustness and efficiency. Concrete theoretical results, via Bernstein--von Mises theorems, are established, validating all claims, and are further supported through extensive numerical studies. To our knowledge, this is possibly the first work on Bayesian inference in SS settings, and its central ideas also apply more broadly to other Bayesian semi-parametric inference problems. 
    more » « less
  2. Abstract In some high-dimensional and semiparametric inference problems involving two populations, the parameter of interest can be characterized by two-sample U-statistics involving some nuisance parameters. In this work we first extend the framework of one-step estimation with cross-fitting to two-sample U-statistics, showing that using an orthogonalized influence function can effectively remove the first order bias, resulting in asymptotically normal estimates of the parameter of interest. As an example, we apply this method and theory to the problem of testing two-sample conditional distributions, also known as strong ignorability. When combined with a conformal-based rank-sum test, we discover that the nuisance parameters can be divided into two categories, where in one category the nuisance estimation accuracy does not affect the testing validity, whereas in the other the nuisance estimation accuracy must satisfy the usual requirement for the test to be valid. We believe these findings provide further insights into and enhance the conformal inference toolbox. 
    more » « less
  3. Many recent developments in causal inference, and functional estimation problems more generally, have been motivated by the fact that classical one-step (first-order) debiasing methods, or their more recent sample-split double machine-learning avatars, can outperform plugin estimators under surprisingly weak conditions. These first-order corrections improve on plugin estimators in a black-box fashion, and consequently are often used in conjunction with powerful off-the-shelf estimation methods. These first-order methods are however provably suboptimal in a minimax sense for functional estimation when the nuisance functions live in Holder-type function spaces. This suboptimality of first-order debiasing has motivated the development of "higher-order" debiasing methods. The resulting estimators are, in some cases, provably optimal over Holder-type spaces, but both the estimators which are minimax-optimal and their analyses are crucially tied to properties of the underlying function space. In this paper we investigate the fundamental limits of structure-agnostic functional estimation, where relatively weak conditions are placed on the underlying nuisance functions. We show that there is a strong sense in which existing first-order methods are optimal. We achieve this goal by providing a formalization of the problem of functional estimation with black-box nuisance function estimates, and deriving minimax lower bounds for this problem. Our results highlight some clear tradeoffs in functional estimation -- if we wish to remain agnostic to the underlying nuisance function spaces, impose only high-level rate conditions, and maintain compatibility with black-box nuisance estimators then first-order methods are optimal. When we have an understanding of the structure of the underlying nuisance functions then carefully constructed higher-order estimators can outperform first-order estimators. 
    more » « less
  4. We consider quantile estimation in a semi-supervised setting, characterized by two available data sets: (i) a small or moderate sized labeled data set containing observations for a response and a set of possibly high dimensional covariates, and (ii) a much larger unlabeled data set where only the covariates are observed. We propose a family of semi-supervised estimators for the response quantile(s) based on the two data sets, to improve the estimation accuracy compared to the supervised estimator, i.e., the sample quantile from the labeled data. These estimators use a flexible imputation strategy applied to the estimating equation along with a debiasing step that allows for full robustness against misspecification of the imputation model. Further, a one-step update strategy is adopted to enable easy implementation of our method and handle the complexity from the non-linear nature of the quantile estimating equation. Under mild assumptions, our estimators are fully robust to the choice of the nuisance imputation model, in the sense of always maintaining root-n consistency and asymptotic normality, while having improved efficiency relative to the supervised estimator. They also attain semi-parametric optimality if the relation between the response and the covariates is correctly specified via the imputation model. As an illustration of estimating the nuisance imputation function, we consider kernel smoothing type estimators on lower dimensional and possibly estimated transformations of the high dimensional covariates, and we establish novel results on their uniform convergence rates in high dimensions, involving responses indexed by a function class and usage of dimension reduction techniques. These results may be of independent interest. Numerical results on both simulated and real data confirm our semi-supervised approach's improved performance, in terms of both estimation and inference. 
    more » « less
  5. In modern large-scale observational studies, data collection constraints often result in partially labeled datasets, posing challenges for reliable causal inference, especially due to potential labeling bias and relatively small size of the labeled data. This paper introduces a decaying missing-at-random (decaying MAR) framework and associated approaches for doubly robust causal inference on treatment effects in such semi-supervised (SS) settings. This simultaneously addresses selection bias in the labeling mechanism and the extreme imbalance between labeled and unlabeled groups, bridging the gap between the standard SS and missing data literatures, while throughout allowing for confounded treatment assignment and high-dimensional confounders under appropriate sparsity conditions. To ensure robust causal conclusions, we propose a bias-reduced SS (BRSS) estimator for the average treatment effect, a type of 'model doubly robust' estimator appropriate for such settings, establishing asymptotic normality at the appropriate rate under decaying labeling propensity scores, provided that at least one nuisance model is correctly specified. Our approach also relaxes sparsity conditions beyond those required in existing methods, including standard supervised approaches. Recognizing the asymmetry between labeling and treatment mechanisms, we further introduce a de-coupled BRSS (DC-BRSS) estimator, which integrates inverse probability weighting (IPW) with bias-reducing techniques in nuisance estimation. This refinement further weakens model specification and sparsity requirements. Numerical experiments confirm the effectiveness and adaptability of our estimators in addressing labeling bias and model misspecification. 
    more » « less