skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gradient drift instability and decameter ionospheric irregularities at the edge of polar holes
The polar and high latitude regions of the ionosphere are host to complex plasma processes involving Magnetosphere-Ionosphere (MI) coupling, plasma convection, and auroral dynamics. The magnetic field lines from the polar cusp down through the auroral region map out to the magnetosphere and project the footprint of the large-scale convective processes driven by the solar wind onto the ionosphere. This region is also a unique environment where the magnetic field is oriented nearly vertical, resulting in horizontal drifts along closed, localized, convection patterns, and where prolonged periods of darkness during the winter result in the absence of significant photoionization. This set of conditions results in unique ionospheric structures which can set the stage for the generation of the gradient drift instability (GDI). The GDI occurs when the density gradient and ExB plasma drift are in the same direction. The GDI is a source of structuring at density gradients and may give rise to ionospheric irregularities that impact over-the-horizon radars and GPS signals. While the plasma ExB drifts are supplied by magnetospheric convection and MI coupling, sharp density gradients in the polar regions will be present at polar holes. Since the GDI occurs where the density gradient and plasma drift are parallel, the ionospheric irregularities caused by the GDI should occur at the leading edge of the polar hole. If so, the resulting production of small-scale density irregularities may, if the density is high enough, give rise to scintillation of GNSS signals and backscatter on HF radars. In this study, we investigate whether these irregularities can occur at the edges of polar holes as detected by the HF radar scatter. We use the Ionospheric Data Assimilation 4-Dimentional (IDA4D) and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) models to characterize the high latitude ionospheric density and ExB drift convective structures, respectively, for one of nine polar hole events identified using RISR-N incoherent scatter radar in Forsythe et al [2021]. The combined IDA4D and AMIE assimilative outputs indicate where the GDI could be triggered, e.g., locations where the density gradient and ExB drift velocity have parallel components and the growth rate is smaller than the characteristic time over which the convective pattern changes, in this case, ~1/15 min. The presence of decameter ionospheric plasma irregularities is detected using the Super Dual Auroral Radar Network (SuperDARN). SuperDARN radars are HF coherent scatter radars. The presence of ionospheric radar returns in regions unstable to GDI grown strongly suggest the GDI is producing decameter scale plasma irregularities. The statistical analyses conducted in the above investigation do not show a clear pattern of enhanced scatter with larger computed GDI growth rates. Further investigation must be conducted before concluding that the GDI does not cause irregularities detectable with HF radar at polar holes.  more » « less
Award ID(s):
2022159
PAR ID:
10650120
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Ionospheric Effects Symposium
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Propagation of high‐frequency (HF) radio signals is strongly dependent on the ionospheric electron density structure along a communications link. The ground‐based, HF space weather radars of the Super Dual Auroral Radar Network (SuperDARN) utilize the ionospheric refraction of transmitted signals to monitor the global circulation ofE‐ andF‐region plasma irregularities. Previous studies have assessed the propagation characteristics of backscatter echoes from ionospheric irregularities in the auroral and polar regions of the Earth's ionosphere. By default, the geographic location of these echoes are found using empirical models which estimate the virtual backscattering height from the measured range along the radar signal path. However, the performance of these virtual height models has not yet been evaluated for mid‐latitude SuperDARN radar observations or for ground scatter (GS) propagation modes. In this study, we derive a virtual height model suitable for mid‐latitude SuperDARN observations using 5 years of data from the Christmas Valley East and West radars. This empirical model can be applied to both ionospheric and GS observations and provides an improved estimate of the ground range to the backscatter location compared to existing high‐latitude virtual height models. We also identify a region of overlapping half‐hopF‐region ionospheric scatter and one‐hopE‐region GS where the measured radar parameters (e.g., velocity, spectral width, elevation angle) are insufficient to discriminate between the two scatter types. Further studies are required to determine whether these backscatter echoes of ambiguous origin are observed by other mid‐latitude SuperDARN radars and their potential impact on scatter classification schemes. 
    more » « less
  2. Abstract The Super Dual Auroral Radar Network (SuperDARN) is a network of High Frequency (HF) radars that are typically used for monitoring plasma convection in the Earth's ionosphere. A majority of SuperDARN backscatter can broadly be divided into three categories: (a) ionospheric scatter due to reflections from plasma irregularities in the E and F regions of the ionosphere, (b) ground scatter caused by reflections from the ground/sea surface following reflection in the ionosphere, and (c) backscatter from meteor trails left by meteoroids as they enter the Earth's atmosphere. Due to the complex nature of HF propagation and mid‐latitude electrodynamics, it is often not straightforward to distinguish between different modes of backscatter observed by SuperDARN. In this study, we present a new two‐stage machine learning algorithm for identifying different backscatter modes in SuperDARN data. In the first stage, a neural network that “mimics” ray‐tracing is used to predict the probability of ionospheric and ground scatter occurring at a given location along with parameters like the elevation angles, reflection heights etc. The inputs to the network include parameters that control HF propagation, such as signal frequency, season, UT time, and geomagnetic activity levels. In the second stage, the output probabilities from the neural network and actual SuperDARN data are clustered together to determine the category of the backscatter. Our model can distinguish between meteor scatter, 1/2 hop E‐/F‐region ionospheric as well as ground/sea scatter. We validate our model by comparing predicted elevation angles with those measured at a SuperDARN radar. 
    more » « less
  3. Abstract Super Dual Auroral Radar Network (SuperDARN) radars operate in a coordinated but monostatic configuration whereby high‐frequency (HF) signals scattered from ionospheric density irregularities or from the surface of the Earth return to the transmitting radar where Doppler parameters are then acquired. A bistatic arrangement has been developed for SuperDARN radars in which HF signals transmitted from one radar are received and analyzed by another radar that is separated by a large distance (>1,000 km). This new capability was developed and tested on radars located in Oregon and Kansas. Numerous 3‐day bistatic campaigns have been conducted over a period extending from September 2019 through March 2020. During these campaigns three distinct bistatic propagation modes have been identified including a direct mode in which signals are transmitted and received through the radar side lobes. Direct mode signals propagate along the great‐circle arc connecting the two bistatic radar sites, reflecting from the ionosphere at bothEregion andFregion altitudes. Two additional modes are observed in which HF signals transmitted from one radar scatter from either ionospheric density irregularities or from the surface of the Earth before propagating to the bistatic receiving radar. Ray tracing simulations performed for examples of each mode show good agreement with observations and confirm our understanding of these three bistatic propagation modes. Bistatic campaigns continue to be scheduled in order to improve technical aspects of this new capability, to further explore the physical processes involved in the propagation and scattering of HF bistatic signals and to expand the coverage of ionospheric effects that is possible with SuperDARN. 
    more » « less
  4. Abstract. Part I of this history describes the motivations for developing radars in the high frequency (HF) band to study plasma density irregularities in the F region of the auroral zone and polar cap ionospheres. French and Swedish scientists were the first to use HF frequencies to study the Doppler velocities of HF radar backscatter from F-region plasma density irregularities over northern Sweden. These observations encouraged the author of this paper to pursue similar measurements over northeastern Alaska, and this eventually led to the construction of a large HF-phased-array radar at Goose Bay, Labrador, Canada. This radar utilized frequencies from 8–20 MHz and could be electronically steered over 16 beam directions, covering a 52∘ azimuth sector. Subsequently, similar radars were constructed at Schefferville, Quebec, and Halley Station, Antarctica. Observations with these radars showed that F-region backscatter often exhibited Doppler velocities that were significantly above and below the ion-acoustic velocity. This distinguished HF Doppler measurements from prior measurements of E-region irregularities that were obtained with radars operating at very high frequency (VHF) and ultra-high frequency (UHF). Results obtained with these early HF radars are also presented. They include comparisons of Doppler velocities observed with HF radars and incoherent scatter radars, comparisons of plasma convection patterns observed simultaneously in conjugate hemispheres, and the response of these patterns to changes in the interplanetary magnetic field, transient velocity enhancements in the dayside cusp, preferred frequencies for geomagnetic pulsations, and observations of medium-scale atmospheric gravity waves with HF radars. 
    more » « less
  5. Abstract. During minor to moderate geomagnetic storms, caused by corotatinginteraction regions (CIRs) at the leading edge of high-speed streams (HSSs), solar windAlfvén waves modulated the magnetic reconnection at the daysidemagnetopause. The Resolute Bay Incoherent Scatter Radars (RISR-C andRISR-N), measuring plasma parameters in the cusp and polar cap, observedionospheric signatures of flux transfer events (FTEs) that resulted in theformation of polar cap patches. The patches were observed as they moved over the RISR, and the Canadian High-Arctic Ionospheric Network (CHAIN)ionosondes and GPS receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents (EICs) are estimated from ground-based magnetometer data using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere launched atmospheric gravity waves, causing travelingionospheric disturbances (TIDs) that propagated equatorward. The TIDs wereobserved in the SuperDual Auroral Radar Network (SuperDARN) high-frequency (HF) radar groundscatter and the detrended total electron content (TEC) measured by globallydistributed Global Navigation Satellite System (GNSS) receivers. 
    more » « less