Comparing the inferences of diverse candidate models is an essential part of model checking and escaping local optima. To enable efficient comparison, we introduce an amortized variational inference framework that can perform fast and reliable posterior estimation across models of the same architecture. Our Any Parameter Encoder (APE) extends the encoder neural network common in amortized inference to take both a data feature vector and a model parameter vector as input. APE thus reduces posterior inference across unseen data and models to a single forward pass. In experiments comparing candidate topic models for synthetic data and product reviews, our Any Parameter Encoder yields comparable posteriors to more expensive methods in far less time, especially when the encoder architecture is designed in model-aware fashion.
more »
« less
This content will become publicly available on March 14, 2026
ASPIRE: iterative amortized posterior inference for Bayesian inverse problems
Abstract Due to their uncertainty quantification, Bayesian solutions to inverse problems are the framework of choice in applications that are risk averse. These benefits come at the cost of computations that are in general, intractable. New advances in machine learning and variational inference (VI) have lowered this computational barrier by leveraging data-driven learning. Two VI paradigms have emerged that represent different tradeoffs: amortized and non-amortized. Amortized VI can produce fast results but due to generalizing to many observed datasets it produces suboptimal inference results. Non-amortized VI is slower at inference but finds better posterior approximations since it is specialized towards a single observed dataset. Current amortized VI techniques run into a sub-optimality wall that cannot be improved without more expressive neural networks or extra training data. We present a solution that enables iterative improvement of amortized posteriors that uses the same networks architectures and training data. The benefits of our method requires extra computations but these remain frugal since they are based on physics-hybrid methods and summary statistics. Importantly, these computations remain mostly offline thus our method maintains cheap and reusable online evaluation while bridging the optimality gap between these two paradigms. We denote our proposed methodASPIRE-Amortized posteriors withSummaries that arePhysics-based andIterativelyREfined. We first validate our method on a stylized problem with a known posterior then demonstrate its practical use on a high-dimensional and nonlinear transcranial medical imaging problem with ultrasound. Compared with the baseline and previous methods in the literature, ASPIRE stands out as an computationally efficient and high-fidelity method for posterior inference.
more »
« less
- Award ID(s):
- 2203821
- PAR ID:
- 10650137
- Publisher / Repository:
- Institute of Physics https://iopscience.iop.org/article/10.1088/1361-6420/adba3d
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 045001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Comparing the inferences of diverse candidate models is an essential part of model checking and escaping local optima. To enable efficient comparison, we introduce an amortized variational inference framework that can perform fast and reliable posterior estimation across models of the same architecture. Our Any Parameter Encoder (APE) extends the encoder neural network common in amortized inference to take both a data feature vector and a model parameter vector as input. APE thus reduces posterior inference across unseen data and models to a single forward pass. In experiments comparing candidate topic models for synthetic data and product reviews, our Any Parameter Encoder yields comparable posteriors to more expensive methods in far less time, especially when the encoder architecture is designed in model-aware fashion.more » « less
-
WISER: Multimodal variational inference for full-waveform inversion without dimensionality reductionWe develop a semiamortized variational inference (VI) framework designed for computationally feasible uncertainty quantification in full-waveform inversion to explore the multimodal posterior distribution without dimensionality reduction. The framework is called full-waveform VI via subsurface extensions with refinements (WISER). WISER builds on top of a supervised generative artificial intelligence method that performs approximate amortized inference that is low-cost albeit showing an amortization gap. This gap is closed through nonamortized refinements that make frugal use of wave physics. Case studies illustrate that WISER is capable of full-resolution, computationally feasible, and reliable uncertainty estimates of velocity models and imaged reflectivities.more » « less
-
Stochastic gradient Markov Chain Monte Carlo (SGMCMC) is a scalable algorithm for asymptotically exact Bayesian inference in parameter-rich models, such as Bayesian neural networks. However, since mixing can be slow in high dimensions, practitioners often resort to variational inference (VI). Unfortunately, VI makes strong assumptions on both the factorization and functional form of the posterior. To relax these assumptions, this work proposes a new non-parametric variational inference scheme that combines ideas from both SGMCMC and coordinate-ascent VI. The approach relies on a new Langevin-type algorithm that operates on a "self-averaged" posterior energy function, where parts of the latent variables are averaged over samples from earlier iterations of the Markov chain. This way, statistical dependencies between coordinates can be broken in a controlled way, allowing the chain to mix faster. This scheme can be further modified in a "dropout" manner, leading to even more scalability. We test our scheme for ResNet-20 on CIFAR-10, SVHN, and FMNIST. In all cases, we find improvements in convergence speed and/or final accuracy compared to SGMCMC and parametric VI.more » « less
-
Deep Generative Networks (DGNs) with probabilistic modeling of their output and latent space are currently trained via Variational Autoencoders (VAEs). In the absence of a known analytical form for the posterior and likelihood expectation, VAEs resort to approximations, including (Amortized) Variational Inference (AVI) and Monte-Carlo (MC) sampling. We exploit the Continuous Piecewise Affine (CPA) property of modern DGNs to derive their posterior and marginal distributions as well as the latter's first moments. These findings enable us to derive an analytical Expectation-Maximization (EM) algorithm that enables gradient-free DGN learning. We demonstrate empirically that EM training of DGNs produces greater likelihood than VAE training. Our findings will guide the design of new VAE AVI that better approximate the true posterior and open avenues to apply standard statistical tools for model comparison, anomaly detection, and missing data imputation.more » « less
An official website of the United States government
