We propose a new nonlinear preconditioned conjugate gradient (PCG) method in real arithmetic for computing the ground states of rotational Bose--Einstein condensate, modeled by the Gross--Pitaevskii equation. Our algorithm presents a few improvements of the PCG method in complex arithmetic studied by Antoine, Levitt, and Tang [J. Comput. Phys., 343 (2017), pp. 92--109]. We show that the special structure of the energy functional $$E(\phi)$$ and its gradient with respect to $$\phi$$ can be fully exploited in real arithmetic to evaluate them more efficiently. We propose a simple approach for fast evaluation of the energy functional, which enables exact line search. Most importantly, we derive the discrete Hessian operator of the energy functional and propose a shifted Hessian preconditioner for PCG, with which the ideal preconditioned Hessian has favorable eigenvalue distributions independent of the mesh size. This suggests that PCG with our ideal Hessian preconditioner is expected to exhibit mesh size-independent asymptomatic convergence behavior. In practice, our preconditioner is constructed by incomplete Cholesky factorization of the shifted discrete Hessian operator based on high-order finite difference discretizations. Numerical experiments in two-dimensional (2D) and three-dimensional (3D) domains show the efficiency of fast energy evaluation, the robustness of exact line search, and the improved convergence of PCG with our new preconditioner in iteration counts and runtime, notably for more challenging rotational BEC problems with high nonlinearity and rotational speed.
more »
« less
A Chebyshev Locally Optimal Block Preconditioned Conjugate Gradient Method for Product and Standard Symmetric Eigenvalue Problems
The discretized Bethe-Salpeter eigenvalue (BSE) problem arises in many body physics and quantum chemistry. Discretization leads to an {\color{black}algebraic} eigenvalue problem involving a matrix $$H\in \mathbb{C}^{2n\times 2n}$$ with a Hamiltonian-like structure. With proper transformations, {\color{black}the real BSE eigenproblem of form I and the complex BSE eigenproblem of form II} can be transformed into real product eigenvalue problems of order $$n$$ and $2n$, respectively. We propose a new variant of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) {\color{black}enhanced with polynomial filters} to improve the robustness and effectiveness of a few well-known algorithms for computing the lowest eigenvalues of the product eigenproblems. {\color{black}Furthermore, our proposed method can be easily employed to solve large sparse standard symmetric eigenvalue problems.} We show that our ideal locally optimal algorithm delivers Rayleigh quotient approximation to the desired lowest eigenvalue that satisfies a global quasi-optimality, which is similar to the global optimality of the preconditioned conjugate gradient method for the iterative solution of a symmetric positive definite linear system. The robustness and efficiency of {\color{black}our proposed method} is illustrated by numerical experiments.
more »
« less
- Award ID(s):
- 2111496
- PAR ID:
- 10650157
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- SIAM Journal on Matrix Analysis and Applications
- Volume:
- 45
- Issue:
- 4
- ISSN:
- 0895-4798
- Page Range / eLocation ID:
- 2211 to 2242
- Subject(s) / Keyword(s):
- Bethe–Salpeter eigenvalue (BSE) problem, structure preserving, polynomial filter, LOBPCG, Chebyshev-Davidson, global quasi-optimality
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
WeproposetousetheLojasiewiczinequalityasageneraltoolforanalyzingthecon- vergence rate of gradient descent on a Hilbert manifold, without resorting to the continuous gradient flow. Using this tool, we show that a Sobolev gradient descent method with adaptive inner product converges exponentially fast to the ground state for the Gross-Pitaevskii eigenproblem. This method can be extended to a class of general high-degree optimizations or nonlinear eigenproblems under cer- tain conditions. We demonstrate this generalization using several examples, in particular a nonlinear Schr ̈odinger eigenproblem with an extra high-order interaction term. Numerical experiments are pre- sented for these problems.more » « less
-
Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described.more » « less
-
Abstract Gradient‐type iterative methods for solving Hermitian eigenvalue problems can be accelerated by using preconditioning and deflation techniques. A preconditioned steepest descent iteration with implicit deflation (PSD‐id) is one of such methods. The convergence behavior of the PSD‐id is recently investigated based on the pioneering work of Samokish on the preconditioned steepest descent method (PSD). The resulting non‐asymptotic estimates indicate a superlinear convergence of the PSD‐id under strong assumptions on the initial guess. The present paper utilizes an alternative convergence analysis of the PSD by Neymeyr under much weaker assumptions. We embed Neymeyr's approach into the analysis of the PSD‐id using a restricted formulation of the PSD‐id. More importantly, we extend the new convergence analysis of the PSD‐id to a practically preferred block version of the PSD‐id, or BPSD‐id, and show the cluster robustness of the BPSD‐id. Numerical examples are provided to validate the theoretical estimates.more » « less
-
In this paper, spectral methods based on conformal mappings are proposed to solve the Steklov eigenvalue problem and its related shape optimization problems in two dimensions. To apply spectral methods, we first reformulate the Steklov eigenvalue problem in the complex domain via conformal mappings. The eigenfunctions are expanded in Fourier series so the discretization leads to an eigenvalue problem for coefficients of Fourier series. For shape optimization problem, we use a gradient ascent approach to find the optimal domain which maximizes k-th Steklov eigenvalue with a fixed area for a given k. The coefficients of Fourier series of mapping functions from a unit circle to optimal domains are obtained for several different k.more » « less
An official website of the United States government

