Channel estimation in rapidly time-varying or short and bursty communication scenarios is costly in terms of both pilot overhead and co-channel interference. In recent work, it was shown that multipath delay-diversity can be exploited to detect multiple co-channel user signals, provided that the relative multipath delays for the different users are distinct, and the two multipath ‘taps’ of each user have roughly commensurate power. These requirements may not hold naturally, however, especially for relatively narrowband or short-range transmissions with small delay spread. As an alternative, this paper advocates using dual antenna transmission in a manner that introduces artificial multipath and tight control of the power of the two channel taps, via baseband processing at the transmitter. The approach enjoys theoretical guarantees and affords simple decoding and accurate synchronization as a side bonus. Similar claims have been previously laid using packet repetition via a single transmit-antenna, but the dual-antenna artificial multipath scheme proposed herein doubles the transmission rate relative to packet repetition. Laboratory experiments using programmable radios are used to demonstrate successful operation of the proposed transmission scheme in practice.
more »
« less
This content will become publicly available on July 7, 2026
Linearly Precoded Signal Alignment: How to Excise Interference with Little Rate Loss
How can we communicate reliably in the presence of unpredictable and potentially debilitating interference? As wireless communication becomes ever more ubiquitous, congestion and interference become increasingly inevitable, especially in contested scenarios. We have recently proposed a simple and practical method that uses packet repetition and multi-antenna reception to build two mixed signal and interference matrix views that contain the same packet in their span – in what we call signal alignment. This enables geometric/algebraic packet recovery via subspace intersection backed by theoretical guarantees – even in the face of adverse interference. A drawback is that the rate is halved owing to the repetition. This paper introduces a repetitionless signal alignment strategy that guarantees interference excision at controllable rate loss, which can be made practically negligible. This new family of signal alignment schemes is based on judicious linear precoding that can also be combined with error control coding. Various precoder designs are introduced and the redundancy split between the linear precoder and the Galois field (error control) encoder is considered in simulations to assess the right trade-off between interference excision and fading / random error control.
more »
« less
- Award ID(s):
- 2433870
- PAR ID:
- 10650483
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently a number of nonlinear precoding algorithms have been developed for designing a downlink transmit signal that is constrained by some nonlinearity, such as one-bit quantization, power-amplifier saturation or constant modulus. These methods use iterative search algorithms to directly design the signal that is transmitted from each antenna. Since the dimension of the search space equals the number of antennas, the computational complexity of these approaches can be high for massive MIMO scenarios. Thus, in this paper we pose the problem in a smaller dimensional space by constraining the signal prior to the nonlinearity to be the output of a linear precoder. The search is then over the vector of predistorted symbols at the input to the linear precoder, which is typically much smaller than the number of antennas. We focus on algorithms that minimize the bit error rate at the receivers, and show that performance can be obtained that is similar to algorithms that operate directly in the antenna domain.more » « less
-
We investigate the energy efficiency (EE) problem in a downlink multi-user millimeter wave (mmWave) rate-splitting multiple access (RSMA) system and propose an energy-efficient one-layer RSMA hybrid precoder design for K users with quality of service constraints. This scheme is applicable to the design of sustainable sixth generation (6G) cellular networks. To make the problem tractable, the analog and the digital precoder designs are decoupled. First, the analog precoder is designed to maximize the desired signal power of each user while ignoring multi-user interference. Second, the digital precoder is designed to manage multi-user interference according to the EE optimization design criterion. We adopt a successive convex approximation-based algorithm for joint optimization of the digital precoders, power, and common rate allocation. Simulation results show that the proposed RSMA scheme always performs at least as well as a baseline spatial division multiple access (SDMA) hybrid precoding scheme and outperforms it under certain channel conditions. These results suggest that RSMA is suitable as a flexible physical layer design for future 6G mmWave networks.more » « less
-
A promising approach to deal with the high hardware cost and energy consumption of massive MIMO transmitters is to use low-resolution digital-to-analog converters (DACs) at each antenna element. This leads to a transmission scheme where the transmitted signals are restricted to a finite set of voltage levels. This paper is concerned with the analysis and optimization of a low-cost quantized precoding strategy, referred to as linear-quantized precoding, for a downlink massive MIMO system under Rayleigh fading. In linear-quantized precoding, the signals are first processed by a linear precoding matrix and subsequently quantized component-wise by the DAC. In this paper, we analyze both the signal-to-interference-plus-noise ratio (SINR) and the symbol error probability (SEP) performances of such linear-quantized precoding schemes in an asymptotic framework where the number of transmit antennas and the number of users grow large with a fixed ratio. Our results provide a rigorous justification for the heuristic arguments based on the Bussgang decomposition that are commonly used in prior works. Based on the asymptotic analysis, we further derive the optimal precoder within a class of linear-quantized precoders that includes several popular precoders as special cases. Our numerical results demonstrate the excellent accuracy of the asymptotic analysis for finite systems and the optimality of the derived precoder.more » « less
-
NA (Ed.)In this paper, we present a method for decoding uplink messages in Internet of Things (IoT) networks that employ packet repetition. We focus on the Sigfox protocol, but our approach is applicable to other IoT protocols that employ message repetition. Our approach endeavors to enhance the reliability of message capture as well as the error rate performance at the base station. To achieve this goal, we propose a novel technique that capitalizes on the unique features of the IoT network’s uplink transmission structure. Through simulations, we demonstrate the effectiveness of our method in various scenarios, including single-user and multi-user setups. We establish the resilience of our approach under higher system loads and interference conditions, showcasing its potential to improve IoT network performance and reliability even when a large number of devices operates over limited spectrum. Our findings reveal the potential of the proposed method as a promising solution for enabling more dependable and energy-efficient communication in IoT Low Power Wide Area Networks.more » « less
An official website of the United States government
