A<sc>bstract</sc> Recent work on flux compactifications suggests that the tadpole constraint generically allows only a limited number of complex structure moduli to become massive, i.e., be stabilized at quadratic order in the spacetime superpotential. We study the effects of higher-order terms systematically around the Fermat point in the 19Landau-Ginzburg model. This model lives at strong coupling and features no Kähler moduli. We show that indeed massless fields can be stabilized in this fashion. We observe that, depending on the flux, this mechanism is more effective when the number of initially massless fields is large. These findings are compatible with both the tadpole conjecture and the massless Minkowski conjecture. Along the way, we complete the classification of integral flux vectors with small tadpole contribution. Thereby we are closing in on a future complete understanding of all possible flux configurations in the 19Landau-Ginzburg model.
more »
« less
Tadpole conjecture in non-geometric backgrounds
A<sc>bstract</sc> Calabi-Yau compactifications have typically a large number of complex structure and/or Kähler moduli that have to be stabilised in phenomenologically-relevant vacua. The former can in principle be done by fluxes in type IIB solutions. However, the tadpole conjecture proposes that the number of stabilised moduli can at most grow linearly with the tadpole charge of the fluxes required for stabilisation. We scrutinise this conjecture in the 26Gepner model: a non-geometric background mirror dual to a rigid Calabi-Yau manifold, in the deep interior of moduli space. By constructing an extensive set of supersymmetric Minkowski flux solutions, we spectacularly confirm the linear growth, while achieving a slightly higher ratio of stabilised moduli to flux charge than the conjectured upper bound. As a byproduct, we obtain for the first time a set of solutions within the tadpole bound where all complex structure moduli are massive. Since the 26model has no Kähler moduli, these show that the massless Minkowski conjecture does not hold beyond supergravity.
more »
« less
- Award ID(s):
- 2112859
- PAR ID:
- 10650563
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 10
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract D7-brane moduli are stabilized by worldvolume fluxes, which contribute to the D3-brane tadpole. We calculate this contribution in the Type IIB limit of F-theory compactifications on Calabi-Yau four-folds with a weak Fano base, and are able to prove a no-go theorem for vast swathes of the landscape of compactifications. When the genus of the curve dual to the D7 worldvolume fluxes is fixed and the number of moduli grows, we find that the D3 charge sourced by the fluxes grows faster than 7/16 of the number of moduli, which supports the Tadpole Conjecture of ref. [1]. Our lower bound for the induced D3 charge decreases when the genus of the curves dual to the stabilizing fluxes increase, and does not allow to rule out a sliver of flux configurations dual to high-genus high-degree curves. However, we argue that most of these fluxes have very high curvature, which is likely to be above the string scale except on extremely large (and experimentally ruled out) compactification manifolds.more » « less
-
A<sc>bstract</sc> We study moduli stabilization via fluxes in the 26Landau-Ginzburg model. Fluxes not only give masses to scalar fields but can also induce higher order couplings that stabilize massless fields. We investigate this for several different flux choices in the 26model and find two examples that are inconsistent with the Refined Tadpole Conjecture. We also present, to our knowledge, the first 4d$$ \mathcal{N} $$ = 1 Minkowski solution in string theory without any flat direction.more » « less
-
A<sc>bstract</sc> Moduli stabilisation in string compactifications with many light scalars remains a major blind-spot in the string landscape. In these regimes, analytic methods cease to work for generic choices of UV parameters which is why numerical techniques have to be exploited. In this paper, we implement algorithms based on JAX, heavily utilising automatic differentiation, just-in-time compilation and parallelisation features, to efficiently construct string vacua. This implementation provides a golden opportunity to efficiently analyse large unexplored regions of the string landscape. As a first example, we apply our techniques to the search of Type IIB flux vacua in Calabi-Yau orientifold compactifications. We argue that our methods only scale mildly with the Hodge numbers making exhaustive studies of low energy effective field theories with$$ \mathcal{O} $$ (100) scalar fields feasible. Using small computing resources, we are able to construct$$ \mathcal{O} $$ (106) flux vacua per geometry withh1,2≥ 2, vastly out-performing previous systematic searches. In particular, we showcase the efficiency of our methods by presenting generic vacua with fluxes below the tadpole constraint set by the orientifold with up toh1,2= 25 complex structure moduli.more » « less
-
A<sc>bstract</sc> We study the complex structure moduli dependence of the scalar Laplacian eigenmodes for one-parameter families of Calabi-Yaun-folds in ℙn+1. It was previously observed that some eigenmodes get lighter while others get heavier as a function of these moduli, which leads to eigenvalue crossing. We identify the cause for this behavior for the torus. We then show that at points in a sublocus of complex structure moduli space where Laplacian eigenmodes cross, the torus has complex multiplication. We speculate that the generalization to arbitrary Calabi-Yau manifolds could be that level crossing is related to rank one attractor points. To test this, we compute the eigenmodes numerically for the quartic K3 and the quintic threefold, and match crossings to CM and attractor points in these varieties. To quantify the error of our numerical methods, we also study the dependence of the numerical spectrum on the quality of the Calabi-Yau metric approximation, the number of points sampled from the Calabi-Yau variety, the truncation of the eigenbasis, and the distance from degeneration points in complex structure moduli space.more » « less
An official website of the United States government

