skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Maximal Brill–Noether Loci via K3 Surfaces
Abstract The Brill–Noether loci $$\mathcal{M}^{r}_{g,d}$$ parameterize curves of genus $$g$$ admitting a linear system of rank $$r$$ and degree $$d$$. When the Brill–Noether number is negative, they are proper subvarieties of the moduli space of genus $$g$$ curves. We explain a strategy for distinguishing Brill–Noether loci by studying the lifting of linear systems on curves in polarized K3 surfaces, which motivates a conjecture identifying the maximal Brill–Noether loci. Via an analysis of the stability of Lazarsfeld–Mukai bundles, we obtain new lifting results for line bundles of type $$g^{3}_{d}$$ that suffice to prove the maximal Brill–Noether loci conjecture in genus $$3$$–$19$, $22$, $23$, and infinitely many cases.  more » « less
Award ID(s):
2200845
PAR ID:
10650604
Author(s) / Creator(s):
;
Publisher / Repository:
https://arxiv.org/abs/2206.04610
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2025
Issue:
20
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Brill–Noether theory of curves plays a fundamental role in the theory of curves and their moduli and has been intensively studied since the 19th century. In contrast, Brill–Noether theory for higher dimensional varieties is less understood. It is hard to determine when Brill–Noether loci are nonempty and these loci can be reducible and of larger than the expected dimension. Let $$E$$ be a semistable sheaf on $${\mathbb{P}}^{2}$$. In this paper, we give an upper bound $$\beta _{r, \mu }$$ for $$h^{0}(E)$$ in terms of the rank $$r$$ and the slope $$\mu $$ of $$E$$. We show that the bound is achieved precisely when $$E$$ is a twist of a Steiner bundle. We classify the sheaves $$E$$ such that $$h^{0}(E)$$ is within $$\lfloor \mu (E) \rfloor + 1$$ of $$\beta _{r, \mu }$$. We determine the nonemptiness, irreducibility and dimension of the Brill–Noether loci in the moduli spaces of sheaves on $${\mathbb{P}}^{2}$$ with $$h^{0}(E)$$ in this range. When they are proper subvarieties, these Brill–Noether loci are irreducible though almost always of larger than the expected dimension. 
    more » « less
  2. Abstract Given $$n$$ general points $$p_1, p_2, \ldots , p_n \in{\mathbb{P}}^r$$ it is natural to ask whether there is a curve of given degree $$d$$ and genus $$g$$ passing through them; by counting dimensions a natural conjecture is that such a curve exists if and only if $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor.\end{equation*}$$The case of curves with nonspecial hyperplane section was recently studied in [2], where the above conjecture was shown to hold with exactly three exceptions. In this paper, we prove a “bounded-error analog” for special linear series on general curves; more precisely we show that existence of such a curve subject to the stronger inequality $$\begin{equation*}n \leq \left\lfloor \frac{(r + 1)d - (r - 3)(g - 1)}{r - 1}\right\rfloor - 3.\end{equation*}$$Note that the $-3$ cannot be replaced with $-2$ without introducing exceptions (as a canonical curve in $${\mathbb{P}}^3$$ can only pass through nine general points, while a naive dimension count predicts twelve). We also use the same technique to prove that the twist of the normal bundle $$N_C(-1)$$ satisfies interpolation for curves whose degree is sufficiently large relative to their genus, and deduce from this that the number of general points contained in the hyperplane section of a general curve is at least $$\begin{equation*}\min\left(d, \frac{(r - 1)^2 d - (r - 2)^2 g - (2r^2 - 5r + 12)}{(r - 2)^2}\right).\end{equation*}$$ As explained in [7], these results play a key role in the author’s proof of the maximal rank conjecture [9]. 
    more » « less
  3. We study wall-crossing for the Beauville–Mukai system of rank three on a general genus two K3 surface. We show that such a system is related to the Hilbert scheme of ten points on the surface by a sequence of flops, whose exceptional loci can be described as Brill–Noether loci. We also obtain Brill–Noether type results for sheaves in the Beauville–Mukai system. 
    more » « less
  4. Abstract We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus of linear series with special vanishing at up to two marked points. When the Brill–Noether number $$\rho $$ is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when $$\rho =1$$, we recover the formulas of Eisenbud-Harris, Pirola, and Chan–Martín–Pflueger–Teixidor for the arithmetic genus of a Brill–Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the $$K$$-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux. 
    more » « less
  5. Abstract In this paper, we determine the number of general points through which a Brill–Noether curve of fixed degree and genus in any projective space can be passed. 
    more » « less