Abstract Ecosystem engineers are organisms that modify their physical habitats in a way that alters resource availability and the structure of the communities they live in. The evolution of ecosystem engineers over the course of Earth history has thus been suggested to have been a driver of macroevolutionary and macroecological changes that are observed in the fossil record. However, the rise to dominance of ecosystem engineers has not been thoroughly reconstructed. Here, we investigate the history of bioturbation and reef‐building (two of the most important marine ecosystem engineering behaviours today) over the Phanerozoic. Using fossil occurrences from the Paleobiology Database, we reconstruct how common communities influenced by ecosystem engineers were in the oceans, how dominant ecosystem engineers were within their own communities, and the taxonomic and ecological composition of bioturbators and reef‐builders. We find that bioturbation has become an increasingly common ecosystem engineering behaviour over the Phanerozoic, while reef‐building ecosystem engineers have not become more dominant since their Devonian apex. We also identify unique bioturbation and reef‐building regimes that are characterized by different ecosystem engineering taxonomic groups, ecological modes, and dominance, suggesting that the nature of ecosystem engineering has at times rapidly shifted over the course of the Phanerozoic. These reconstructions will serve as important data for understanding how ecosystem engineers have driven changes in biodiversity and ecosystem structure over the course of Earth history.
more »
« less
This content will become publicly available on November 1, 2026
‘Earth system engineers’ and the cumulative impact of organisms in deep time
Understanding the role of humans as ‘ecosystem engineers’ requires a deep-time perspective rooted in evolutionary history and the fossil record. However, no con-ceptual framework exists for studying the rise of ecosystem engineering in deep time, requiring us to consider effects that fall outside the scope of traditional defini-tions. Here, we present a new framework applicable to both modern and ancient engineering-type effects. We propose a new term – ‘Earth system engineering’ – to describe biological processes that alter the structure and function of planetary spheres, and which combines core tenets of ecosystem engineering, niche construction, and legacy effects. We illustrate this framework using the fossil record, and show how it can be applied across the tree of life, and throughout Earth history.
more »
« less
- Award ID(s):
- 2051255
- PAR ID:
- 10650665
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Trends in Ecology & Evolution
- Volume:
- 40
- Issue:
- 11
- ISSN:
- 0169-5347
- Page Range / eLocation ID:
- 1066 to 1076
- Subject(s) / Keyword(s):
- Evolution, extinction, ecosystem engineering, fossil record
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fossil data are subject to inherent biological, geologic, and anthropogenic filters that can distort our interpretations of ancient life and environments. The inevitable presence of incomplete fossils thus requires a holistic assessment of how to navigate the downstream effects of bias on our ability to accurately reconstruct aspects of biology in deep time. In particular, we must assess how biases affect our capacity to infer evolutionary relationships, which are essential to analyses of diversification, paleobiogeography, and biostratigraphy in Earth history. In this study, we use an established completeness metric to quantify the effects of taphonomic filters on the amount of phylogenetic information available in the fossil record of 795 extinct squamate (e.g., lizards, snakes, amphisbaenians, and mosasaurs) species spanning 242 Myr of geologic time. This study found no meaningful relationship between spatiotemporal sampling intensity and fossil record completeness. Instead, major differences in squamate fossil record completeness stem from a combination of anatomy/body size and affinities of different squamate groups to specific lithologies and depositional environments. These results reveal that naturally occurring processes create structural megabiases that filter anatomical and phylogenetic data in the squamate fossil record, while anthropogenic processes play a secondary role.more » « less
-
null (Ed.)The Ediacaran–Cambrian transition marks one of the most important geobiological revolutions in Earth History, including multiple waves of evolutionary radiation and successive episodes of apparent mass extinction. Among the proposed drivers of these events (in particular the extinction of the latest Neoproterozoic ‘Ediacara biota’) is the emergence of complex metazoans and their associated behaviors. Many metazoans are thought to have crucial geobiological impacts on both resource availability and the character of the physical environment – ‘ecosystem engineering’ – biological processes best preserved in the geological record as trace fossils. Here, we review this model using the trace fossil record of the Ediacaran to Cambrian Nama Group of southern Namibia, combining previous published accounts with the results of our own field investigations. We produce a revised ichnostratigraphy for the Nama Group that catalogues new forms, eliminates others, and brings the trace fossil record of the Nama into much closer alignment with what is known from other Ediacaran sections worldwide. We provide evidence for a link between sequence stratigraphy, oxygen, and the emergence of more complex bilaterian behaviors. Lastly, we show that observed patterns of extinction and survival over pulses of Ediacaran extinction are hard to ally with any one specific source of ecological stress associated with bioturbation, and thus a biologically-driven extinction of the Ediacara biota, if it occurred, was more likely to have been driven by some combination of these factors, rather than any single one.more » « less
-
Life has existed on Earth for most of the planet’s history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This process protects inactive individuals and minimizes the risk of extinction by preserving information that stabilizes life-system dynamics. Here, we develop a framework for understanding dormancy on early Earth, beginning with a primer on dormancy theory and its core criteria. We hypothesize that dormancy-like mechanisms acting on chemical precursors in a prebiotic world may have facilitated the origin of life. Drawing on evidence from phylogenetic reconstructions and the fossil record, we demonstrate that dormancy is prevalent across the tree of life and throughout deep time. These observations lead us to consider how dormancy might have shaped nascent living systems by buffering stochastic processes in small populations, protecting against large-scale planetary disturbances, aiding dispersal in patchy landscapes and facilitating adaptive radiations. Given that dormancy is a fundamental and easily evolved property on Earth, it is also likely to be a feature of life elsewhere in the universe.more » « less
-
Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace – a multidimensional representation of node ages – and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record.more » « less
An official website of the United States government
