Abstract Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of net ecosystem CO2exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long‐term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water‐limited ecosystems versus temperature‐ and radiation‐limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water‐limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature‐ and radiation‐limited ecosystems. The Lund‐Potsdam‐Jena (LPJ) model and the Multi‐scale Synthesis and Terrestrial Model Inter‐comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.
more »
« less
This content will become publicly available on October 16, 2026
Leading Satellite‐Based Evapotranspiration Products Insufficiently Capture Interannual Variability: Evidence From GRACE/FO and In Situ Observations
Abstract Satellite‐based evapotranspiration (ET) products such as OpenET and GLEAM are widely used for drought monitoring and ecosystem‐climate studies. However, their ability to accurately capture interannual variability (IAV), a key requirement for such applications, remains under‐evaluated. Here, we assessed IAV in OpenET and GLEAM using an independent water balance approach that combined precipitation, discharge, and GRACE/FO total water storage anomalies across nine river basins in the western United States. Even after accounting for observational uncertainty through a Monte Carlo approach, both products systematically underestimate IAV relative to water balance‐based ET, by more than 60% on average. This result is further supported by long‐term tower measurements from AmeriFlux. We also demonstrated that ET sensitivity to climate and vegetation drivers in OpenET and GLEAM differ substantially from water balance‐based estimates. These findings reveal important limitations in satellite‐based ET products and highlight the need for improved IAV representation to support ecosystem and climate applications.
more »
« less
- Award ID(s):
- 2429739
- PAR ID:
- 10650729
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 19
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Water stress regulates land‐atmosphere carbon dioxide (CO2) exchanges in the tropics; however, its role remains poorly characterized due to the confounding roles of radiation, temperature and canopy dynamics. In particular, uncertainty stems from the relative roles of plant‐available water (supply) and atmospheric water vapor deficit (demand) as mechanistic drivers of photosynthetic carbon (C) uptake variability. Using satellite measurements of gravity, CO2and fluorescence to constrain a mechanistic carbon‐water cycle model from 2001 to 2018, we found that the interannual variability (IAV) of water stress on photosynthetic C uptake was 52% greater than the combined effects of other factors. Surprisingly, the dominance of water stress on C uptake IAV was greater in the wet tropics (94%) than in the dry tropics (26%). Plant‐available water supply and atmospheric demand both contributed to the IAV of water stress on photosynthetic C uptake across the tropics, but the IAV of demand effects was 21% greater than the IAV of supply effects (33% greater in the wet tropics and 6% greater in the dry tropics). We found that the IAV of water stress on C uptake was 24% greater than the IAV of the combination of other factors in the net land‐atmosphere C sink in the whole tropics, 26% greater in the wet tropics, and 7% greater in the dry tropics. Given the recent trends in tropical precipitation and atmospheric humidity, our findings indicate that water stress——from both supply and demand——will likely dominate the climate response of land C sink across tropical ecosystems in the coming decades.more » « less
-
Abstract This paper reviews the current state of high‐resolution remotely sensed soil moisture (SM) and evapotranspiration (ET) products and modeling, and the coupling relationship between SM and ET. SM downscaling approaches for satellite passive microwave products leverage advances in artificial intelligence and high‐resolution remote sensing using visible, near‐infrared, thermal‐infrared, and synthetic aperture radar sensors. Remotely sensed ET continues to advance in spatiotemporal resolutions from MODIS to ECOSTRESS to Hydrosat and beyond. These advances enable a new understanding of bio‐geo‐physical controls and coupled feedback mechanisms between SM and ET reflecting the land cover and land use at field scale (3–30 m, daily). Still, the state‐of‐the‐science products have their challenges and limitations, which we detail across data, retrieval algorithms, and applications. We describe the roles of these data in advancing 10 application areas: drought assessment, food security, precision agriculture, soil salinization, wildfire modeling, dust monitoring, flood forecasting, urban water, energy, and ecosystem management, ecohydrology, and biodiversity conservation. We discuss that future scientific advancement should focus on developing open‐access, high‐resolution (3–30 m), sub‐daily SM and ET products, enabling the evaluation of hydrological processes at finer scales and revolutionizing the societal applications in data‐limited regions of the world, especially the Global South for socio‐economic development.more » « less
-
Abstract The terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001–2017) of eddy‐covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter‐annual variability (IAV). The forest was a mean annual carbon sink (252 [42] gC ), and NEP increased at rate +6.4–7.0 gC (or ca. +2.5% ) during the period. This was attributed to the increasing gross‐primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d , and increase in GPP and NEP outside the main growing season contributed ca. one‐third and one‐fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long‐term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi‐layer ecosystem model, we showed that direct fertilization effect diminishes when moving from leaf to ecosystem, and only 30–40% of the observed ecosystem GPP increase could be attributed to . The increasing trend in leaf‐area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid‐rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing and LAI, explaining the apparent proportionality between observed GPP and trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.more » « less
-
Abstract Agroecosystems, which include row crops, pasture, and grass and shrub grazing lands, are sensitive to changes in management, weather, and genetics. To better understand how these systems are responding to changes, we need to improve monitoring and modeling carbon and water dynamics. Vegetation Indices (VIs) are commonly used to estimate gross primary productivity (GPP) and evapotranspiration (ET), but these empirical relationships are often location and crop specific. There is a need to evaluate if VIs can be effective and, more general, predictors of ecosystem processes through time and across different agroecosystems. Near‐surface photographic (red‐green‐blue) images from PhenoCam can be used to calculate the VI green chromatic coordinate (GCC) and offer a pathway to improve understanding of field‐scale relationships between VIs and GPP and ET. We synthesized observations spanning 76 site‐years across 15 agroecosystem sites with PhenoCam GCCand GPP or ET estimates from eddy covariance (EC) to quantify interannual variability (IAV) in the relationship between GPP and ET and GCCacross. We uncovered a high degree of variability in the strength and slopes of the GCC∼ GPP and ET relationships (R2 = 0.1 ‐ 0.9) within and across production systems. Overall, GCCis a better predictor of GPP than ET (R2 = 0.64 and 0.54, respectively), performing best in croplands (R2 = 0.91). Shrub‐dominated systems exhibit the lowest predictive power of GCCfor GPP and ET but have less IAV in slope. We propose that PhenoCam estimates of GCCcould provide an alternative approach for predictions of ecosystem processes.more » « less
An official website of the United States government
