Plasmonic modes confined to metallic nanostructures at the atomic and molecular scale push the boundaries of light–matter interactions. Within these extreme plasmonic structures of ultrathin nanogaps, coupled nanoparticles, and tunnelling junctions, new physical phenomena arise when plasmon resonances couple to electronic, exitonic, or vibrational excitations, as well as the efficient generation of non-radiative hot carriers. This review surveys the latest experimental and theoretical advances in the regime of extreme nano-plasmonics, with an emphasis on plasmon-induced hot carriers, strong coupling effects, and electrically driven processes at the molecular scale. We will also highlight related nanophotonic and optoelectronic applications including plasmon-enhanced molecular light sources, photocatalysis, photodetection, and strong coupling with low dimensional materials.
more »
« less
This content will become publicly available on July 21, 2026
Collision-induced spectroscopy and radiative association in microcavities
Polariton chemistry has emerged as a new approach for directing molecular systems via strong light–matter interactions in confined photonic media. In this work, we implement a classical electrodynamics–molecular dynamics method to investigate collision-induced emission and radiative association in planar microcavities under variable light–matter coupling strength. We focus on the argon–xenon (Ar–Xe) gas mixture as a representative system, simulating collisions coupled to the confined multimode electromagnetic field. We find that while the effects of a microcavity on collision-induced emission spectra are subtle, even at extremely large coupling strengths, radiative association can be significantly enhanced in a microcavity. Our results also indicate that microcavities may be designed to induce changes in the statistical distribution of Ar–Xe complex lifetimes. These findings provide new insights into the control of intermolecular interactions and radiative kinetics with microcavities.
more »
« less
- Award ID(s):
- 2340746
- PAR ID:
- 10650760
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 163
- Issue:
- 3
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular exciton-polaritons exhibit long-range, ultrafast propagation, yet recent experiments have reported far slower propagation than expected. In this work, we implement a nonperturbative approach to quantify how static energetic disorder renormalizes polariton group velocity in strongly coupled microcavities. The method requires no exact diagonalization or master equation propagation and depends only on measurable parameters: the mean exciton energy and its probability distribution, the microcavity dispersion, and the Rabi splitting. Using parameters corresponding to recently probed organic microcavities, we show that exciton inhomogeneous broadening slows both lower and upper polaritons, particularly when the mean exciton energy fluctuation approaches the collective light–matter coupling strength. A detailed discussion and interpretation of these results is provided using perturbation theory in the limit of weak resonance scattering. The magnitude of the effects examined in this work supports the conclusion that most of the reported polaritonic slowdown arises from dynamical (phonon-assisted) disorder, with static energetic disorder contributing only secondarily.more » « less
-
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule’s excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling. We propose the value of this detuning is consistent with radiative relaxation of Herzberg-Teller polaritons into collective molecular states coupled to the cavity photon coherently. We contrast the feature stemming from light emission from the HT polariton state with those that occur due to polariton-enhanced light absorption. Our results demonstrate the landscape of molecular and photonic interactions enabled by cavity polariton formation using complex chromophores and how researchers can design resonators to leverage these interactions to characterize and control polaritonic properties.more » « less
-
Abstract Optical spectrometers are essential tools for analysing light‒matter interactions, but conventional spectrometers can be complicated and bulky. Recently, efforts have been made to develop miniaturized spectrometers. However, it is challenging to overcome the trade-off between miniaturizing size and retaining performance. Here, we present a complementary metal oxide semiconductor image sensor-based miniature computational spectrometer using a plasmonic nanoparticles-in-cavity microfilter array. Size-controlled silver nanoparticles are directly printed into cavity-length-varying Fabry‒Pérot microcavities, which leverage strong coupling between the localized surface plasmon resonance of the silver nanoparticles and the Fabry‒Pérot microcavity to regulate the transmission spectra and realize large-scale arrayed spectrum-disparate microfilters. Supported by a machine learning-based training process, the miniature computational spectrometer uses artificial intelligence and was demonstrated to measure visible-light spectra at subnanometre resolution. The high scalability of the technological approaches shown here may facilitate the development of high-performance miniature optical spectrometers for extensive applications.more » « less
-
Abstract Exciton‐polaritons in organic microcavities are applied in devices including lasers, light‐emitting devices, and photodetectors, as well as in structures capable of tuning exciton kinetics and energy transfer. To enable a broader tailoring of polariton properties, it is important to develop means to better control molecular orientation and tune the intensity of the exciton–photon interaction. Vapor‐processed, glassy organic thin films are previously shown to have tunable molecular orientation as evidenced by phenomena including birefringence and transition dipole moment (TDM) alignment. Here, this tunability in TDM orientation with thin film processing conditions is exploited to continuously vary the interaction between the exciton and confined cavity photon mode. By embedding a thin film of 4,4′‐bis[(N‐carbazole)styryl]biphenyl (BSB‐Cz) in a metal‐reflector microcavity, ultrastrong coupling and hybridization of multiple electronic transitions of BSB‐Cz are demonstrated with a common cavity mode. Increasing the temperature during BSB‐Cz deposition tunes the TDM orientation from predominantly in‐plane to random to slightly vertical. This leads to a corresponding ≈30% variation in the associated Rabi splitting, consistent with theoretical predictions. This work demonstrates a means to continuously tune coupling strength from a materials perspective while also providing a handle to tune orientation disorder in thin film.more » « less
An official website of the United States government
