skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: C*-Framework for Higher-Order Bulk-Boundary Correspondences
A typical crystal is a finite piece of a material which may be invariant under some point symmetry group. If it is a so-called intrinsic higher-order topological insulator or superconductor, then it displays boundary modes at hinges or corners protected by the crystalline symmetry and the bulk topology. We explain the mechanism behind such phenomena using operator K-theory. Specifically, we derive a groupoid C ∗ -algebra that (1) encodes the dynamics of the electrons in the infinite size limit of a crystal; (2) remembers the boundary conditions at the crystal’s boundaries, and (3) admits a natural action by the point symmetries of the atomic lattice. The filtrations of the groupoid’s unit space by closed subsets that are invariant under the groupoid and point group actions supply equivariant cofiltrations of the groupoid C ∗ -algebra. We show that specific derivations of the induced spectral sequences in twisted equivariant K-theories enumerate all non-trivial higher-order bulk-boundary correspondences.  more » « less
Award ID(s):
2131760 1823800
PAR ID:
10651135
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Verlag
Date Published:
Journal Name:
Communications in Mathematical Physics
Volume:
406
Issue:
10
ISSN:
0010-3616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study quotients of the Toeplitz C*-algebra of a random walk, similar to those studied by the author and Markiewicz for finite stochastic matrices. We introduce a new Cuntz-type quotient C*-algebra for random walks that have convergent ratios of transition probabilities. These C*-algebras give rise to new notions of ratio limit space and boundary for such random walks, which are computed by appealing to a companion paper by Woess. Our combined results are leveraged to identify a unique symmetry-equivariant quotient C*-algebra for any symmetric random walk on a hyperbolic group, shedding light on a question of Viselter on C*-algebras of subproduct systems. 
    more » « less
  2. null (Ed.)
    We prove that the higher rho invariant is a homomorphism from the structure group of a compact manifold to the K-group of certain geometric C*-algebra. In particular, we apply this result to show that the structure group is infinitely generated for a class of manifolds. 
    more » « less
  3. We consider synthetic materials consisting of self-coupled identical resonators carrying classical internal degrees of freedom. The architecture of such material is specified by the positions and orientations of the resonators. Our goal is to calculate the smallest C*-algebra that covers the dynamical matrices associated to a fixed architecture and adjustable internal structures. We give the answer in terms of a groupoid C*-algebra that can be canonically associated to a uniformly discrete subset of the group of isometries of the Euclidean space. Our result implies that the isomorphism classes of these C*-algebras split these architected materials into classes containing materials that are identical from the dynamical point of view. 
    more » « less
  4. Generative adversarial networks (GANs), a class of distribution-learning methods based on a two-player game between a generator and a discriminator, can generally be formulated as a minmax problem based on the variational representation of a divergence between the unknown and the generated distributions. We introduce structure-preserving GANs as a data-efficient framework for learning distributions with additional structure such as group symmetry, by developing new variational representations for divergences. Our theory shows that we can reduce the discriminator space to its projection on the invariant discriminator space, using the conditional expectation with respect to the sigma-algebra associated to the underlying structure. In addition, we prove that the discriminator space reduction must be accompanied by a careful design of structured generators, as flawed designs may easily lead to a catastrophic “mode collapse” of the learned distribution. We contextualize our framework by building symmetry-preserving GANs for distributions with intrinsic group symmetry, and demonstrate that both players, namely the equivariant generator and invariant discriminator, play important but distinct roles in the learning process. Empirical experiments and ablation studies across a broad range of data sets, including real-world medical imaging, validate our theory, and show our proposed methods achieve significantly improved sample fidelity and diversity—almost an order of magnitude measured in Frechet Inception Distance—especially in the small data regime 
    more » « less
  5. A characteristic property of a gapless liquid state is its emergent symmetry and dual symmetry, associated with the conservation laws of symmetry charges and symmetry defects respectively. These conservation laws, considered on an equal footing, can't be described simply by the representation theory of a group (or a higher group). They are best described in terms of {\it a topological order (TO) with gappable boundary in one higher dimension}; we call this the {\it symTO} of the gapless state. The symTO can thus be considered a fingerprint of the gapless state. We propose that a largely complete characterization of a gapless state, up to local-low-energy equivalence, can be obtained in terms of its {\it maximal} emergent symTO. In this paper, we review the symmetry/topological-order (Symm/TO) correspondence and propose a definition of {\it maximal symTO}. We discuss various examples to illustrate these ideas. We find that the 1+1D Ising critical point has a maximal symTO described by the 2+1D double-Ising topological order. We provide a derivation of this result using symmetry twists in an exactly solvable model of the Ising critical point. The critical point in the 3-state Potts model has a maximal symTO of double (6,5)-minimal-model topological order. As an example of a noninvertible symmetry in 1+1D, we study the possible gapless states of a Fibonacci anyon chain with emergent double-Fibonacci symTO. We find the Fibonacci-anyon chain without translation symmetry has a critical point with unbroken double-Fibonacci symTO. In fact, such a critical theory has a maximal symTO of double (5,4)-minimal-model topological order. We argue that, in the presence of translation symmetry, the above critical point becomes a stable gapless phase with no symmetric relevant operator. 
    more » « less