Abstract Understanding the electronic structures of high‐valent metal complexes aids the advancement of metal‐catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4]−(1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of1by X‐ray spectroscopies have led previous authors to contradictory conclusions, motivating the re‐examination of its X‐ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including1, here it is shown that there is a systematic trifluoromethyl effect on X‐ray absorption that blue shifts the resonant Cu K‐edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like1and formally Cu(I) complexes like (Ph3P)3CuCF3(3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that1is best described as containing a Cu(I) ion with dncount approaching 10.
more »
« less
Ultrafast Light‐Driven Electronic and Structural Changes in LaFeO 3 Perovskites Probed by Femtosecond X‐Ray Absorption Spectroscopy
Abstract Conducting real‐time, element‐specific studies of photo‐excited systems is a long‐standing challenge. The development of X‐ray free‐electron lasers (XFELs) has paved the way for the emergence of a promising technique: femtosecond X‐ray absorption spectroscopy (fs‐XAS). This powerful technique reveals electronic and geometric characteristics, providing unprecedented insight into their dynamic interactions under nonequilibrium conditions. Herein, the fs‐XAS technique is employed at PAL‐XFEL to unravel light‐driven ultrafast electronic and structural changes in epitaxial lanthanum iron oxide (LaFeO3) thin films. Density functional theory (DFT) and multiplet calculations are utilized to expound on the experimental results. The analyses reveal that photoexcitation initially induces high‐ and intermediate‐spin Fe2+states through ligand‐to‐metal charge transfer (LMCT), followed by polaron formation. It is demonstrated that the reduced overlap between the oxygen 2pand iron 3dorbitals accounts for all experimental observations, including 1) the XAS shifts to lower energies, 2) the decrease in the crystal field splitting, and 3) the relatively larger shifts observed in the oxygen 1sXAS.
more »
« less
- Award ID(s):
- 2309000
- PAR ID:
- 10651264
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 37
- Issue:
- 29
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Surface chemistry and core composition of 2D MXenes play a major role in their interfacial properties, but the determination and quantification of their bonding environments remain challenging. X‐ray Photoelectron Spectroscopy (XPS) is a method of choice that is broadly utilized but is often hindered by large uncertainties and systematic bias due to adsorbed species such as adventitious carbon or etching residues. In this work, energy‐dependent XPS and depth profile modeling of the Ti3C2TxMXene surface are employed to differentiate the contributions from the MXene and the adsorbed species, thereby increasing the accuracy of quantification. In comparison, uncorrected lab‐based XPS suffers from a systematic overestimation of Ti vacancies by 7% and an underestimation of terminal atoms, particularly F, by as much as 15%. Interestingly, it is found that a simple inelastic mean free path correction is sufficient to address the issue and reveals extremely low defects in Ti3C2TxMXene synthesized using the HF/HCl etching route. Soft X‐ray Absorption Spectroscopy (XAS), supported by Density Functional Theory (DFT) calculations, also demonstrates a high chemical sensitivity of the surface terminations. This work provides novel insights into XPS quantification and the use of XAS for probing the carbide core and surface chemistry of Ti3C2TxMXenes.more » « less
-
Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.more » « less
-
Abstract Motivated by the recent observation of superconductivity withTc ~ 80 K in pressurized La3Ni2O71, we explore the structural and electronic properties ofA3Ni2O7bilayer nickelates (A = La-Lu, Y, Sc) as a function of pressure (0–150 GPa) from first principles including a Coulomb repulsion term. At ~ 20 GPa, we observe an orthorhombic-to-tetragonal transition in La3Ni2O7at variance with x-ray diffraction data, which points to so-far unresolved complexities at the onset of superconductivity, e.g., charge doping by variations in the oxygen stoichiometry. We compile a structural phase diagram that establishes chemical and external pressure as distinct and counteracting control parameters. We find unexpected correlations betweenTcand thein-planeNi-O-Ni bond angles for La3Ni2O7. Moreover, two structural phases with significantc+octahedral rotations and in-plane bond disproportionations are uncovered forA = Nd-Lu, Y, Sc that exhibit a pressure-driven electronic reconstruction in the Niegmanifold. By disentangling the involvement of basal versus apical oxygen states at the Fermi surface, we identify Tb3Ni2O7as an interesting candidate for superconductivity at ambient pressure. These results suggest a profound tunability of the structural and electronic phases in this novel materials class and are key for a fundamental understanding of the superconductivity mechanism.more » « less
-
Abstract Silk nanofibers (SNFs) from abundant sources are low‐cost and environmentally friendly. Combined with other functional materials, SNFs can help create bioelectronics with excellent biocompatibility without environmental concerns. However, it is still challenging to construct an SNF‐based composite with high conductivity, flexibility, and mechanical strength for all SNF‐based electronics. Herein, this work reports the design and fabrication of Ti3C2Tx‐silver@silk nanofibers (Ti3C2Tx‐Ag@SNF) composites with multi‐dimensional heterogeneous conductive networks using combined in situ growth and vacuum filtration methods. The ultrahigh electrical conductivity of Ti3C2Tx‐Ag@SNF composites (142959 S m−1) provides the kirigami‐patterned soft heaters with a rapid heating rate of 87 °C s−1. The multi‐dimensional heterogeneous network further allows the creation of electromagnetic interference shielding devices with an exceptionally high specific shielding effectiveness of 10,088 dB cm−1. Besides working as a triboelectric layer to harvest the mechanical energy and recognize the hand gesture, the Ti3C2Tx‐Ag@SNF composites can also be combined with an ionic layer to result in a capacitive pressure sensor with a high sensitivity of 410 kPa−1in a large range due to electronic‐double layer effect. The applications of the Ti3C2Tx‐Ag@SNF composites in recognizing human gestures and human‐machine interfaces to wirelessly control a trolley demonstrate the future development of all SNF‐based electronics.more » « less
An official website of the United States government

