Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.
more »
« less
This content will become publicly available on April 25, 2026
Ancient co-option of LTR retrotransposons as yeast centromeres
Summary The evolutionary origins of the genetic point centromere in the brewer’s yeastSaccharomyces cerevisiae,a member of the order Saccharomycetales, are still unknown. Competing hypotheses suggest that the point centromere tripartite genetic centromere DNA elements (CDEs) either evolved from ancestral epigenetic centromeres by descent with modification or were gained through horizontal transfer from selfish DNA plasmids.1,2Here, we identified centromeres in the sister order Saccharomycodales and termed them “proto-point centromeres” due to sequence features that bridge the evolutionary gap between point centromeres and ancestral centromeres types. Comparative genomic analyses across multiple yeast orders showed an unexpected evolutionary link between point and proto-point centromeres to the long terminal repeats (LTRs) of Ty5 retrotransposons. Strikingly, one Saccharomycodales species,Saccharomycodes ludwigii, harbors compact Ty5-based centromeres, where its CDEII elements are divergent AT-rich Ty5 LTRs. These living fossil centromeres show how retrotransposon cis-regulation was likely co-opted for genetic centromere specification. These insights show that point centromeres are direct descendants of retrotransposons and have evolved by descent with modification. Ultimately, the many diverse centromere types across the yeast subphylum may share a common ancestry rooted in retrotransposon activity.
more »
« less
- Award ID(s):
- 1921641
- PAR ID:
- 10651534
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kelleher, Erin S (Ed.)Centromeres reside in rapidly evolving, repeat-rich genomic regions, despite their essential function in chromosome segregation. Across organisms, centromeres are rich in selfish genetic elements such as transposable elements and satellite DNAs that can bias their transmission through meiosis. However, these elements still need to cooperate at some level and contribute to, or avoid interfering with, centromere function. To gain insight into the balance between conflict and cooperation at centromeric DNA, we take advantage of the close evolutionary relationships within theDrosophila simulansclade—D.simulans,D.sechellia, andD.mauritiana—and their relative,D.melanogaster. Using chromatin profiling combined with high-resolution fluorescence in situ hybridization on stretched chromatin fibers, we characterize all centromeres across these species. We discovered dramatic centromere reorganization involving recurrent shifts between retroelements and satellite DNAs over short evolutionary timescales. We also reveal the recent origin (<240 Kya) of telocentric chromosomes inD.sechellia, where the X and fourth centromeres now sit on telomere-specific retroelements. Finally, the Y chromosome centromeres, which are the only chromosomes that do not experience female meiosis, do not show dynamic cycling between satDNA and TEs. The patterns of rapid centromere turnover in these species are consistent with genetic conflicts in the female germline and have implications for centromeric DNA function and karyotype evolution. Regardless of the evolutionary forces driving this turnover, the rapid reorganization of centromeric sequences over short evolutionary timescales highlights their potential as hotspots for evolutionary innovation.more » « less
-
Abstract Chromosomes with two centromeres provide a unique opportunity to study chromosome breakage and DNA repair using completely endogenous cellular machinery. Using a conditional transcriptional promoter to control the second centromere, we are able to activate the dicentric chromosome and follow the appearance of DNA repair products. We find that the rate of appearance of DNA repair products resulting from homology-based mechanisms exceeds the expected rate based on their limited centromere homology (340 bp) and distance from one another (up to 46.3 kb). In order to identify whether DNA breaks originate in the centromere, we introduced 12 single-nucleotide polymorphisms (SNPs) into one of the centromeres. Analysis of the distribution of SNPs in the recombinant centromeres reveals that recombination was initiated with about equal frequency within the conserved centromere DNA elements CDEII and CDEIII of the two centromeres. The conversion tracts range from about 50 bp to the full length of the homology between the two centromeres (340 bp). Breakage and repair events within and between the centromeres can account for the efficiency and distribution of DNA repair products. We propose that in addition to providing a site for kinetochore assembly, the centromere may be a point of stress relief in the face of genomic perturbations.more » « less
-
Heitman, Joseph (Ed.)ABSTRACT Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large (∼150-kb), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen Verticillium dahliae . Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single degenerated long terminal repeat (LTR) retrotransposon is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, of which some could be linked to centromeres, suggesting that centromeres contributed to chromosomal evolution. The size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus Verticillium . IMPORTANCE The genus Verticillium contains 10 species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization, and rapid evolution of centromeres in a set of closely related fungal species.more » « less
-
Abstract Eukaryotic retroelements are generally divided into two classes: long terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. A third class of eukaryotic retroelement, the Penelope-like elements (PLEs), has been well-characterized bioinformatically, but relatively little is known about the transposition mechanism of these elements. PLEs share some features with the R2 retrotransposon fromBombyx mori, which uses a target-primed reverse transcription (TPRT) mechanism, but their distinct phylogeny suggests PLEs may utilize a novel mechanism of mobilization. Using protein purified fromE. coli, we report unique in vitro properties of a PLE from the green anole (Anolis carolinensis), revealing mechanistic aspects not shared by other retrotransposons. We found that reverse transcription is initiated at two adjacent sites within the transposon RNA that is not homologous to the cleaved DNA, a feature that is reflected in the genomic “tail” signature shared between and unique to PLEs. Our results for the first active PLE in vitro provide a starting point for understanding PLE mobilization and biology.more » « less
An official website of the United States government
