BackgroundMetastatic cancer remains one of the leading causes of cancer-related mortality worldwide. Yet, the prediction of survivability in this population remains limited by heterogeneous clinical presentations and high-dimensional molecular features. Advances in machine learning (ML) provide an opportunity to integrate diverse patient- and tumor-level factors into explainable predictive ML models. Leveraging large real-world datasets and modern ML techniques can enable improved risk stratification and precision oncology. ObjectiveThis study aimed to develop and interpret ML models for predicting overall survival in patients with metastatic cancer using the Memorial Sloan Kettering-Metastatic (MSK-MET) dataset and to identify key prognostic biomarkers through explainable artificial intelligence techniques. MethodsWe performed a retrospective analysis of the MSK-MET cohort, comprising 25,775 patients across 27 tumor types. After data cleaning and balancing, 20,338 patients were included. Overall survival was defined as deceased versus living at last follow-up. Five classifiers (extreme gradient boosting [XGBoost], logistic regression, random forest, decision tree, and naive Bayes) were trained using an 80/20 stratified split and optimized via grid search with 5-fold cross-validation. Model performance was assessed using accuracy, area under the curve (AUC), precision, recall, and F1-score. Model explainability was achieved using Shapley additive explanations (SHAP). Survival analyses included Kaplan-Meier estimates, Cox proportional hazards models, and an XGBoost-Cox model for time-to-event prediction. The positive predictive value and negative predictive value were calculated at the Youden index–optimal threshold. ResultsXGBoost achieved the highest performance (accuracy=0.74; AUC=0.82), outperforming other classifiers. In survival analyses, the XGBoost-Cox model with a concordance index (C-index) of 0.70 exceeded the traditional Cox model (C-index=0.66). SHAP analysis and Cox models consistently identified metastatic site count, tumor mutational burden, fraction of genome altered, and the presence of distant liver and bone metastases as among the strongest prognostic factors, a pattern that held at both the pan-cancer level and recurrently across cancer-specific models. At the cancer-specific level, performance varied; prostate cancer achieved the highest predictive accuracy (AUC=0.88), while pancreatic cancer was notably more challenging (AUC=0.68). Kaplan-Meier analyses demonstrated marked survival separation between patients with and without metastases (80-month survival: approximately 0.80 vs 0.30). At the Youden-optimal threshold, positive predictive value and negative predictive value were approximately 70% and 80%, respectively, supporting clinical use for risk stratification. ConclusionsExplainable ML models, particularly XGBoost combined with SHAP, can strongly predict survivability in metastatic cancers while highlighting clinically meaningful features. These findings support the use of ML-based tools for patient counseling, treatment planning, and integration into precision oncology workflows. Future work should include external validation on independent cohorts, integration with electronic health records via Fast Healthcare Interoperability Resources–based dashboards, and prospective clinician-in-the-loop evaluation to assess real-world use.
more »
« less
Validation of the graded prognostic assessment and recursive partitioning analysis as prognostic tools using a modern cohort of patients with brain metastases
Abstract BackgroundPrognostic indices for patients with brain metastases (BM) are needed to individualize treatment and stratify clinical trials. Two frequently used tools to estimate survival in patients with BM are the recursive partitioning analysis (RPA) and the diagnosis-specific graded prognostic assessment (DS-GPA). Given recent advances in therapies and improved survival for patients with BM, this study aims to validate and analyze these 2 models in a modern cohort. MethodsPatients diagnosed with BM were identified via our institution’s Tumor Board meetings. Data were retrospectively collected from the date of diagnosis with BM. The concordance of the RPA and GPA was calculated using Harrell’s C index. A Cox proportional hazards model with backwards elimination was used to generate a parsimonious model predictive of survival. ResultsOur study consisted of 206 patients diagnosed with BM between 2010 and 2019. The RPA had a prediction performance characterized by Harrell’s C index of 0.588. The DS-GPA demonstrated a Harrell’s C index of 0.630. A Cox proportional hazards model assessing the effect of age, presence of lung, or liver metastases, and Eastern Cooperative Oncology Group (ECOG) performance status score of 3/4 on survival yielded a Harrell’s C index of 0.616. Revising the analysis with an uncategorized ECOG demonstrated a C index of 0.648. ConclusionsWe found that the performance of the RPA remains unchanged from previous validation studies a decade earlier. The DS-GPA outperformed the RPA in predicting overall survival in our modern cohort. Analyzing variables shared by the RPA and DS-GPA produced a model that performed analogously to the DS-GPA.
more »
« less
- Award ID(s):
- 2125528
- PAR ID:
- 10651565
- Publisher / Repository:
- Oxford Press
- Date Published:
- Journal Name:
- Neuro-Oncology Practice
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2054-2577
- Page Range / eLocation ID:
- 763 to 771
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Yanwu, Xu (Ed.)Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients’ survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs’ morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer.more » « less
-
null (Ed.)Abstract Background Interstitial lung abnormalities (ILA) can be detected on computed tomography (CT) in lung cancer patients and have an association with mortality in advanced non-small cell lung cancer (NSCLC) patients. The aim of this study is to demonstrate the significance of ILA for mortality in patients with stage I NSCLC using Boston Lung Cancer Study cohort. Methods Two hundred and thirty-one patients with stage I NSCLC from 2000 to 2011 were investigated in this retrospective study (median age, 69 years; 93 males, 138 females). ILA was scored on baseline CT scans prior to treatment using a 3-point scale (0 = no evidence of ILA, 1 = equivocal for ILA, 2 = ILA) by a sequential reading method. ILA score 2 was considered the presence of ILA. The difference of overall survival (OS) for patients with different ILA scores were tested via log-rank test and multivariate Cox proportional hazards models were used to estimate hazard ratios (HRs) including ILA score, age, sex, smoking status, and treatment as the confounding variables. Results ILA was present in 22 out of 231 patients (9.5%) with stage I NSCLC. The presence of ILA was associated with shorter OS (patients with ILA score 2, median 3.85 years [95% confidence interval (CI): 3.36 – not reached (NR)]; patients with ILA score 0 or 1, median 10.16 years [95%CI: 8.65 - NR]; P < 0.0001). In a Cox proportional hazards model, the presence of ILA remained significant for increased risk for death (HR = 2.88, P = 0.005) after adjusting for age, sex, smoking and treatment. Conclusions ILA was detected on CT in 9.5% of patients with stage I NSCLC. The presence of ILA was significantly associated with a shorter OS and could be an imaging marker of shorter survival in stage I NSCLC.more » « less
-
ABSTRACT ObjectivesMost bipolar disorder (BD) patients initially present with depressive symptoms, resulting in a delayed diagnosis of BD and poor clinical outcomes. This study aims to identify features predictive of the conversion from Major Depressive Disorder (MDD) to BD by leveraging electronic health record (EHR) data from the Clínica San Juan de Dios Manizales in Colombia. MethodsWe employed a multivariable Cox regression model to identify important predictors of conversion from MDD to BD. ResultsAnalyzing 15 years of EHR data from 13,607 patients diagnosed with MDD, a total of 1610 (11.8%) transitioned to BD. Predictive features of the conversion to BD included severity of the initial MDD episode, presence of psychosis and hospitalization at first episode, family history of BD, and female gender. Additionally, we observed associations with medication classes (positive associations with prescriptions of mood stabilizers, antipsychotics, and negative associations with antidepressants) and a positive association with suicidality, a feature derived from natural language processing (NLP) of clinical notes. Together, these risk factors predicted BD conversion within 5 years of the initial MDD diagnosis, with a recall of 72% and a precision of 38%. ConclusionsOur study confirms previously identified risk factors identified through registry‐based studies (female gender and psychotic depression at the index MDD episode) and identifies novel ones (suicidality extracted from clinical notes). These results simultaneously demonstrate the validity of using EHR data for predicting BD conversion and underscore its potential for the identification of novel risk factors, thereby improving early diagnosis.more » « less
-
Abstract BackgroundOropharyngeal cancer (OPC) exhibits varying responses to chemoradiation therapy, making treatment outcome prediction challenging. Traditional imaging‐based methods often fail to capture the spatial heterogeneity within tumors, which influences treatment resistance and disease progression. Advances in modeling techniques allow for more nuanced analysis of this heterogeneity, identifying distinct tumor regions, or habitats, that drive patient outcomes. PurposeTo interrogate the association between treatment‐induced changes in spatial heterogeneity and chemoradiation resistance of oropharyngeal cancer (OPC) based on a novel tumor habitat analysis. MethodsA mathematical model was used to estimate tumor time dynamics of patients with OPC based on the applied analysis of partial differential equations. The position and momentum of each voxel was propagated according to Fokker‐Planck dynamics, that is, a common model in statistical mechanics. The boundary conditions of the Fokker‐Planck equation were solved based on pre‐ and intra‐treatment (i.e., after 2 weeks of therapy)18F‐FDG‐PET SUV images of patients (n = 56) undergoing definitive (chemo)radiation for OPC as part of a previously conducted prospective clinical trial. Tumor‐specific time dynamics, measured based on the solution of the Fokker‐Planck equation, were generated for each patient. Tumor habitats (i.e., non‐overlapping subregions of the primary tumor) were identified by measuring vector similarity in voxel‐level time dynamics through a fuzzy c‐means clustering algorithm. The robustness of our habitat construction method was quantified using a mean silhouette metric to measure intra‐habitat variability. Fifty‐four habitat‐specific radiomic texture features were extracted from pre‐treatment SUV images and normalized by habitat volume. Univariate Kaplan‐Meier analyses were implemented as a feature selection method, where statistically significant features (p < 0.05, log‐rank) were used to construct a multivariate Cox proportional‐hazards model. Parameters from the resulting Cox model were then used to construct a risk score for each patient, based on habitat‐specific radiomic expression. The patient cohort was stratified by median risk score value and association with recurrence‐free survival (RFS) was evaluated via log‐rank tests. ResultsDynamic tumor habitat analysis partitioned the gross disease of each patient into three spatial subregions. Voxels within each habitat suggested differential response rates in different compartments of the tumor. The minimum mean silhouette value was 0.57 and maximum mean silhouette value was 0.8, where values above 0.7 indicated strong intra‐habitat consistency and values between 0.5 and 0.7 indicated reasonable intra‐habitat consistency. Nine radiomic texture features (three GLRLM, two GLCOM, and three GLSZM) and SUVmax were found to be prognostically significant and were used to build the multivariate Cox model. The resulting risk score was associated with RFS (p = 0.032). By contrast, potential confounding factors (primary tumor volume and mean SUV) were not significantly associated with RFS (p = 0.286 andp = 0.231, respectively). ConclusionWe interrogated spatial heterogeneity of oropharyngeal tumors through the application of a novel algorithm to identify spatial habitats on SUV images. Our habitat construction technique was shown to be robust and habitat‐specific feature spaces revealed distinct underlying radiomic expression patterns. Radiomic features were extracted from dynamic habitats and used to build a risk score which demonstrated prognostic value.more » « less
An official website of the United States government

