In the Gulf of Alaska, a series of marine heat waves depleted Pacific cod (Gadus macrocephalus) biomass to the lowest abundance ever recorded and led to the fishery’s closure in 2020. Although the fishery has been productive for decades, this collapse may have historical precedents. Traditional knowledge holders refer to cod as ‘the fish that stop’, and there is a suggested period of decline in the 1930s. Here we conduct a catch reconstruction of the early commercial fishery (1864–1950), confirming a rapid catch decline in the 1920s and 1930s. Next, we evaluate evidence for possible drivers. We document changes to demand and technology that contributed to declining catch. However, we also find both qualitative and quantitative evidence of depletion, suggesting catch declines were not driven entirely by social factors. Overfishing may have contributed to localized catch declines as evidenced by declining catch rates in heavily fished localities. We also find evidence for climate as a driver of regional decline, with the period of catch decline characterized by up to 2°C higher temperatures as compared to the earlier period of high fisheries production. Our analysis underscores the importance of understanding long-term drivers of fisheries productivity and the value of linking fisheries and climate histories. This article is part of the theme issue ‘Shifting seas: understanding deep-time human impacts on marine ecosystems’.
more »
« less
This content will become publicly available on April 1, 2026
Integrating marine historical ecology into management of Alaska’s Pacific cod fishery for climate readiness
Abstract The Pacific cod (Gadus macrocephalus) fishery was closed in 2020 after a rapid decline in biomass caused by the marine heat waves of 2014–2019. Pacific cod are exceptionally thermally sensitive and management of this fishery is now challenged by increasingly unpredictable climate conditions. Fisheries monitoring is critical for climate readiness, but short-term monitoring data may be inadequate for recognizing and anticipating change under rapid climate changes. We propose an interdisciplinary, marine historical ecology framework that looks to long-term records (local and traditional knowledge, history, archaeology, and paleoclimatology) to capture a long range of ecological variability and provide historical context for management. In order to connect to contemporary fisheries management, this framework must be built on a common vocabulary and an understanding of the key metrics used in fisheries stock assessments. Here, we propose metrics derived from Pacific cod stock assessment and synthesize information relevant to understanding the effects of past warming periods on cod populations across the Gulf of Alaska and Bering Sea. This case study provides a framework for thinking about how to use these historical records in the context of fisheries management under rapidly changing climate conditions.
more »
« less
- PAR ID:
- 10651767
- Editor(s):
- Antonello, Alessandro
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- ICES Journal of Marine Science
- Volume:
- 82
- Issue:
- 4
- ISSN:
- 1054-3139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The management and conservation of tuna and other transboundary marine species have to date been limited by an incomplete understanding of the oceanographic, ecological and socioeconomic factors mediating fishery overlap and interactions, and how these factors vary across expansive, open ocean habitats. Despite advances in fisheries monitoring and biologging technology, few attempts have been made to conduct integrated ecological analyses at basin scales relevant to pelagic fisheries and the highly migratory species they target. Here, we use vessel tracking data, archival tags, observer records, and machine learning to examine inter‐ and intra‐annual variability in fisheries overlap (2013–2020) of five pelagic longline fishing fleets with North Pacific albacore tuna (Thunnus alalunga, Scombridae). Although progressive declines in catch and biomass have been observed over the past several decades, the North Pacific albacore is one of the only Pacific tuna stocks primarily targeted by pelagic longlines not currently listed as overfished or experiencing overfishing. We find that fishery overlap varies significantly across time and space as mediated by (1) differences in habitat preferences between juvenile and adult albacore; (2) variation of oceanographic features known to aggregate pelagic biomass; and (3) the different spatial niches targeted by shallow‐set and deep‐set longline fishing gear. These findings may have significant implications for stock assessment in this and other transboundary fishery systems, particularly the reliance on fishery‐dependent data to index abundance. Indeed, we argue that additional consideration of how overlap, catchability, and size selectivity parameters vary over time and space may be required to ensure the development of robust, equitable, and climate‐resilient harvest control rules.more » « less
-
Abstract Historical information has provided key insights into long‐term ecological change to marine species and ecosystems, with value to fisheries. Yet, pathways to integrate these diverse data sources into fisheries decision‐making have not been clear. Here, we identify an array of biological, ecological, and social information suitable for contemporary science‐based decision‐making, derived from local ecological knowledge, historical archives, archaeological middens and palaeoecological material. We outline two broad pathways to integrate these historical data into fisheries decision‐making, demonstrating that data‐driven use of historical information is relevant across a range of management contexts. First, historical information can inform fisheries assessments that range from simple to complex, affecting indicators of stock status. Second, it can inform estimates of biological potential and social preference, affecting the choice of fisheries reference points. Using the Caribbean Sea as an example, we illustrate these ideas with case studies representing diverse species and historical data types. Integrating historical data can improve indicators of the current state of fish populations and result in management decisions based on a more complete understanding of a potential range of variation, avoiding shifted baselines. The urgency of this work is underscored by accelerating environmental changes and the rapid loss of invaluable historical information sources. By illuminating pathways, our goal is to increase the accessibility of these types of information and to underscore that scientists, managers, and resource users have roles to play in identifying and integrating relevant long‐term data at various spatial and temporal scales to sustainably manage marine fisheries.more » « less
-
Abstract The central stock of northern anchovy (CSNA; Engraulis mordax), the most abundant small pelagic fish in the southern California Current, is key to ecosystem functions. We review drivers of its population dynamics in relation to management. Springtime upwelling intensity lagged by 2 years co-varied positively with CSNA biomass, as did the abundance of Pacific sardine (Sardinops sagax; weakly negative). CSNA population dynamics indicate the need for a multi-species stock assessment, but given serious challenges with modelling population collapse and recovery dynamics, and its moderate fisheries, we suggest that sensible management could be a simple 2-tier harvest control rule designed to emphasize the key trophic role of CSNA in the ecosystem while maintaining moderate socio-economic services. We recommend a monitoring fishery of no more than 5 KMT year−1 split between central and southern California when the stock falls below the long-term median abundance estimate of 380 KMT across the California portion of its range, and a catch limit of 25 KMT year−1 when the stock is above this reference point. This rule would be precautionary, serving to maintain the most important small pelagic forage in the ecosystem, various fisheries interests, and information streams when the population is in a collapsed state.more » « less
-
Abstract Climate change impacts on fishery resources have been widely reported worldwide. Nevertheless, a knowledge gap remains for the warm-temperate Southwest Atlantic Ocean—a global warming hotspot that sustains important industrial and small-scale fisheries. By combining a trait-based framework and long-term landing records, we assessed species’ sensitivity to climate change and potential changes in the distribution of important fishery resources (n = 28; i.e., bony fishes, chondrichthyans, crustaceans, and mollusks) in Southern Brazil, Uruguay, and the northern shelf of Argentina. Most species showed moderate or high sensitivity, with mollusks (e.g., sedentary bivalves and snails) being the group with the highest sensitivity, followed by chondrichthyans. Bony fishes showed low and moderate sensitivities, while crustacean sensitivities were species-specific. The stock and/or conservation status overall contributed the most to higher sensitivity. Between 1989 and 2019, species with low and moderate sensitivity dominated regional landings, regardless of the jurisdiction analyzed. A considerable fraction of these landings consisted of species scoring high or very high on an indicator for potential to change their current distribution. These results suggest that although the bulk of past landings were from relatively climate-resilient species, future catches and even entire benthic fisheries may be jeopardized because (1) some exploited species showed high or very high sensitivities and (2) the increase in the relative representation of landings in species whose distribution may change. This paper provides novel results and insights relevant for fisheries management from a region where the effects of climate change have been overlooked, and which lacks a coordinated governance system for climate-resilient fisheries.more » « less
An official website of the United States government
