skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 12, 2026

Title: Examining Postural Responses to Perturbations in 3D: A Pilot Study
Affecting muscle spasticity, strength, and coordination, stroke results in alterations to muscle control and ability to compensate from unexpected perturbations. Post-stroke, upper extremity movements are heavily modified from perturbations, which increase the difficulty of activities of daily living (ADLs). Postural responses from upper extremity perturbations in healthy and stroke populations have been examined in movements constrained to 2D planar motion, and may provide insight as an assessment tool to help inform therapists to better structure rehabilitation training regimens towards individualized health care for improved long-term outcomes. However, implications on constraining motion in the horizontal plane are not clear and may reduce the generalizability of the findings to the movement through unconstrained 3D space necessary for ADLs. In this paper, we explore the effects of joint perturbations on the elbow and shoulder in unconstrained, gravity-compensated position holding tasks. We present a metric-diverse, dynamic task framework building upon previous 2D experiments designed to better assess rehabilitative efforts in movement trajectories with applied gravity compensation in three dimensional space aimed towards the generalizability of 3D motion. Results suggest that motion of multi-DoF joints display varied movement qualities in 3D space with robotic gravity compensation when compared to constrained planar movements.  more » « less
Award ID(s):
2230971
PAR ID:
10651810
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1653 to 1658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stroke commonly affects the ability of the upper extremities (UEs) to move normally. In clinical settings, identifying and measuring movement abnormality is challenging due to the imprecision and impracticality of available assessments. These challenges interfere with therapeutic tracking, communication, and treatment. We thus sought to develop an approach that blends precision and pragmatism, combining high-dimensional motion capture with out-of-distribution (OOD) detection. We used an array of wearable inertial measurement units to capture upper body motion in healthy and chronic stroke subjects performing a semi-structured, unconstrained 3D tabletop task. After data were labeled by human coders, we trained two deep learning models exclusively on healthy subject data to classify elemental movements (functional primitives). We tested these healthy subject-trained models on previously unseen healthy and stroke motion data. We found that model confidence, indexed by prediction probabilities, was generally high for healthy test data but significantly dropped when encountering OOD stroke data. Prediction probabilities worsened with more severe motor impairment categories and were directly correlated with individual impairment scores. Data inputs from the paretic UE, rather than trunk, most strongly influenced model confidence. We demonstrate for the first time that using OOD detection with high-dimensional motion data can reveal clinically meaningful movement abnormality in subjects with chronic stroke. 
    more » « less
  2. Abstract Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus affecting the joint’s torque production. Understanding how muscles generate forces is a key element to injury detection. Researchers have developed several computational methods to obtain muscle forces and joint torques. Electromyography (EMG) driven modeling is one of the approaches to estimate muscle forces and obtain joint torques from muscle activity measurements. Musculoskeletal models and EMG-driven models require necessary muscle-specific parameters for the calculation. The focus of this study is to investigate the EMG-driven approach along with an upper extremity musculoskeletal model to determine muscle forces of two major muscle groups, biceps brachii and triceps brachii, consisting of seven muscle-tendon units. Estimated muscle forces are used to determine the elbow joint torque. Experimental EMG signals and motion capture data are collected for a healthy subject. The musculoskeletal model is scaled to match the geometric parameters of the subject. Then, the approach calculates muscle forces and joint moment for two tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net joint torques for both tasks are estimated. The study also has compared the effect of muscle-tendon parameters (optimal fiber length and tendon slack length) on the estimated results. 
    more » « less
  3. Chua Chin Heng, Matthew (Ed.)
    Stroke rehabilitation seeks to accelerate motor recovery by training functional activities, but may have minimal impact because of insufficient training doses. In animals, training hundreds of functional motions in the first weeks after stroke can substantially boost upper extremity recovery. The optimal quantity of functional motions to boost recovery in humans is currently unknown, however, because no practical tools exist to measure them during rehabilitation training. Here, we present PrimSeq, a pipeline to classify and count functional motions trained in stroke rehabilitation. Our approach integrates wearable sensors to capture upper-body motion, a deep learning model to predict motion sequences, and an algorithm to tally motions. The trained model accurately decomposes rehabilitation activities into elemental functional motions, outperforming competitive machine learning methods. PrimSeq furthermore quantifies these motions at a fraction of the time and labor costs of human experts. We demonstrate the capabilities of PrimSeq in previously unseen stroke patients with a range of upper extremity motor impairment. We expect that our methodological advances will support the rigorous measurement required for quantitative dosing trials in stroke rehabilitation. 
    more » « less
  4. We are developing a system for long term Semi-Automated Rehabilitation At the Home (SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-human methodology used by the SARAH system for automated assessment of upper extremity stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting stroke survivor's movements and generating training task performance assessment scores during rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with data-driven techniques. The expert knowledge is more observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to algorithms incorporating high level constraints relating to activity structure (i.e., type and order of segments per task). We utilize an HMM and a Decision Tree model to connect these high level priors to data driven analysis. The lower layers (RGB images and raw kinematics) need to be addressed primarily through data driven techniques. We use a transformer based architecture operating on low-level action features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these complimentary algorithms effectively, thus encoding the information from different layers of the movement hierarchy. Through this combination, we produce a robust segmentation and task assessment results on noisy, variable and limited data, which is characteristic of low cost video capture of rehabilitation at the home. Our proposed approach achieves 85% accuracy in per-frame labeling, 99% accuracy in segment classification and 93% accuracy in task completion assessment. Although the methodology proposed in this paper applies to upper extremity rehabilitation using the SARAH system, it can potentially be used, with minor alterations, to assist automation in many other movement rehabilitation contexts (i.e., lower extremity training for neurological accidents). 
    more » « less
  5. In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke. 
    more » « less