Changes to the storm-scale physical processes of an eastern United States mesoscale convective system (MCS) on 14 May 2018 in response to global warming are quantified using the pseudo–global warming (PGW) numerical method. Climate perturbations in temperature DT and specific humidity DQ of different magnitudes are imposed separately and simultaneously. The mid-twenty-first century environment becomes increasingly unstable with larger DT, promoting more favorable MCS conditions. By the late twenty-first century, however, this warming, which maximizes in the mid-troposphere, results in increased convective inhibition (CIN) and decreased convective available potential energy (CAPE). Midlevel warming also reduces cold pool generation through the downward advection of the relatively warm midlevel air. Consequently, the MCS of interest is weak in the midcentury and propagates discretely over the Appalachian Mountains, while it fails to initiate in the late century. In contrast, projected increases in DQ support more intense MCSs in both the mid- and late twenty-first centuries. Moisture increases are maximized in lower troposphere, increasing CAPE and decreasing CIN. Additionally, the stronger convections generate deeper and denser cold pools. Therefore, storms remain robust as they move over the Appalachian Mountains. However, leeside isolated convective cells, which form due to lee waves in the more unstable environment, and their widespread cold pools reduce the leeside instability. This, in conjunction with the more intense MCS cold pools, leads to rapid MCS weakening in the lee. Experiments with both DT and DQ illustrate that larger magnitude increases in one thermodynamic variable may supersede increases in the other.
more »
« less
This content will become publicly available on July 15, 2026
Investigation of a Mesoscale Convective System over the Eastern United States in Future Climates. Part I: Precipitation Evolution
This study employs a pseudo–global warming approach to investigate precipitation changes from a mesoscale convective system (MCS) on 14 May 2018 over the eastern United States. An Appalachian-Mountain-crossing MCS is simulated for historical, mid-twenty-first century (2045–54), and late-twenty-first century (2090–99) climate scenarios. For experiments using ensemble-mean perturbations in atmospheric, soil, and oceanic variables derived from 34 general circulation models, MCS precipitation diminishes by 25%in the midcentury and 65%in the late century. Experiments testing the sensitivity to these variables separately reveal that atmospheric variables primarily drive precipitation changes. Additional sensitivity experiments quantify MCS responses to temperature, moisture, and wind perturbations separately, with the magnitude of perturbations stratified as low, moderate, or high. Experiments highlight the dominant though contrasting roles of the thermodynamic variables. In midcentury, temperature increases lead to reductions in rainfall rates by up to 74.3%, while increased moisture raises rainfall rates by 75.1%. In the late century, the MCS fails to initiate for temperature perturbations of all magnitudes. Rainfall rate and precipitation area substantially increase with larger moisture perturbations, while the frequency of heavy (95th percentile) and extreme (99th percentile) precipitation increases more than 100%, with minimal changes in precipitation rate. Finally, ensemble-mean perturbations are added to all variables, except for temperature or moisture, to which either a low or high perturbation is added. MCSs are robust when low-temperature or high-moisture perturbations are included, though they fail to initiate for low-moisture and high-temperature perturbations, highlighting the challenges in projecting future MCS behavior.
more »
« less
- PAR ID:
- 10652117
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 38
- Issue:
- 14
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 3503 to 3531
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Convective-permitting ensemble simulations are used to understand the roles of thermodynamic and dynamic processes in changing intense storms over the West African Sahel due to increases in atmospheric greenhouse gas concentrations. Ensemble simulations with 16 members represent recent August conditions during the height of the boreal summer monsoon season over the Sahel. They are compared with 5 Future-Warming ensemble simulations with increased greenhouse gas concentrations under the late-21st-century high-emission SSP5-8.5 scenario and initial/boundary conditions from the Current-Climate data plus the multi-model mean anomalies derived from CMIP6 experiments. The Current-Climate simulations reproduce observed precipitation and environmental conditions over the Sahel well. The frequency of heavy rainfall events with 24-hr rainfall >77 mm (the 99.9th percentile) increases by ≥38.2% in the Future-Warming simulations. While the low- to mid-level vertical wind shear increases in the Future-Warming simulations, we find no significant correlations between the environmental shear strength and peak storm rain rates. In contrast, lower (middle) tropospheric moisture and temperature are correlated (anticorrelated) with peak rain rates and/or the maximum updraft velocity of intense events, consistent with significant correlations between the increased atmospheric instability and storm intensity. Thus, thermodynamic processes and not dynamical (shear-related) processes dominate the rainfall intensification over the Sahel in the simulations. Nevertheless, the enhanced shear strength is associated with larger rain-shield areas and propagation speeds of intense storms in Future-Warming. Wind shear strength is also correlated with pre-storm atmospheric instability, which grows less/more under strong/weak shear with greenhouse gas increases and is relevant for sub/super Clausius-Clapeyron scaling of precipitation.more » « less
-
Abstract Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.more » « less
-
The processes that determine the seasonality of precipitation in the Congo Basin are examined using the atmospheric column moisture budget. Studying the fundamental determinants of Congo Basin precipitation seasonality supports process-based studies of variations on all time scales, including those associated with greenhouse gas-induced global warming. Precipitation distributions produced by the ERA5 reanalysis provide sufficient accuracy for this analysis, which requires a consistent dataset to relate the atmospheric dynamics and moisture distribution to the precipitation field. The Northern and Southern Hemisphere regions of the Congo Basin are examined separately to avoid the misconception that Congo Basin rainfall is primarily bimodal. While evapotranspiration is indispensable for providing moisture to the atmospheric column to support precipitation in the Congo Basin, its seasonal variations are small and it does not drive precipitation seasonality. During the equinoctial seasons, precipitation is primarily supported by meridional wind convergence in the moist environment in the 800–500 hPa layer where moist air flows into the equatorial trough. Boreal fall rains are stronger than boreal spring rains in both hemispheres because low-level moisture divergence develops in boreal spring in association with the developing Saharan thermal low. The moisture convergence term also dominates the moisture budget during the summer season in both hemispheres, with meridional convergence in the 850–500 hPa layer as cross-equatorial flow interacts with the cyclonic flow about the Angola and Sahara thermal lows. Winter precipitation is low because of dry air advection from the winter hemisphere subtropical highs over the continent.more » « less
-
Abstract Lightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends has been challenging because of changes in the observational network, but understanding historical and possible future changes in lightning activity is important for fire management planning. Dynamically downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was found to be a key predictor of weekly lightning activity through multiple regression analysis, along with additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates of historical June–July lightning since 1979 showed increasing but lower-magnitude trends than the observed record, derived from the highly heterogeneous lightning sensor network, over the same period throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity over the same June–July season and geographic region by the end of the twenty-first century. Such a substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska because of increased opportunities for ignitions, although the final outcome also depends on fire weather conditions and fuels.more » « less
An official website of the United States government
