ABSTRACT Coalescent modelling of hybrid zones can provide novel insights into the historical demography of populations, including divergence times, population sizes, introgression proportions, migration rates and the timing of hybrid zone formation. We used coalescent analysis to determine whether the hybrid zone between phylogeographic lineages of the Plateau Fence Lizard (Sceloporus tristichus) in Arizona formed recently due to human‐induced landscape changes, or if it originated during Pleistocene climatic shifts. Given the presence of mitochondrial DNA from another species in the hybrid zone (Southwestern Fence Lizard,S. cowlesi), we tested for the presence ofS. cowlesinuclear DNA in the hybrid zone as well as reassessed the species boundary betweenS. tristichusandS. cowlesi. No evidence ofS. cowlesinuclear DNA is found in the hybrid zone, and the paraphyly of both species raises concerns about their taxonomic validity. Introgression analysis placed the divergence time between the parental hybrid zone populations at approximately 140 kya and their secondary contact and hybridization at approximately 11 kya at the end of the Pleistocene. Introgression proportions estimated for hybrid populations are correlated with their geographic distance from parental populations. The multispecies coalescent with migration provided significant support for unidirectional migration moving from south to north, which is consistent with spatial cline analyses that suggest a slow but steady northward shift of the centre of the hybrid zone over the last two decades. When analysing hybrid populations sampled along a linear transect, coalescent methods can provide novel insights into hybrid zone dynamics.
more »
« less
This content will become publicly available on October 21, 2026
Comparative Phylogeography of Phrynosomatid Lizards in Baja California: Asynchronous Divergences and Expansion of Callisaurus draconoides Across the North American Deserts
ABSTRACT AimWe tested whether co‐distributed phrynosomatid lizards in the Baja California Peninsula (BCP) share synchronous phylogeographic discontinuities, as predicted by the “peninsular archipelago” hypothesis, and examined the diversification ofCallisaurus draconoidesthroughout its range. LocationThe BCP and the Great Basin, Mojave and Sonoran Deserts of southwestern North America. TaxaFive co‐distributed species complexes representing four genera within Phrynosomatidae:Callisaurus,Petrosaurus,UrosaurusandSceloporus. MethodsDouble‐digest restriction‐associated‐DNA (ddRAD) sequencing was used to collect genome‐wide sequence data for 309 lizards. We used phylogenetic analyses of concatenated loci and population admixture analysis of unlinked SNPs to identify lineages. To infer a species tree, we collected target sequence capture (TSC) data. Migration between adjacent peninsular lineages was estimated using the multispecies coalescent with migration (MSC‐M) in BPP. A full‐likelihood Bayesian comparative phylogeographic approach (ecoevolity) was used to test the simultaneous divergence hypothesis for the Isthmus of La Paz and Vizcaíno Desert. ResultsWe identified 24 potential lineages within the five co‐distributed complexes. Contact zones between lineages were observed at the Isthmus of La Paz in four of the five complexes, and in all five within the Vizcaíno Desert. The time‐calibrated species tree indicates that within each complex, divergences at the Isthmus of La Paz predate those across the Vizcaíno Desert. We found strong support for at least three independent divergence events at the Isthmus of La Paz and the Vizcaíno Desert, thereby rejecting the simultaneous divergence hypothesis. Inferred migration rates between adjacent peninsular populations were generally low (M << 1) to absent. Zebra‐tailed lizards (Callisaurus), in which the earliest diverging lineages are endemic to the southern BCP, exhibit a clear pattern of Pleistocene range expansion from the BCP into the deserts of the western United States and mainland Mexico. The most deeply nested populations inCallisaurusoccur at the northern, eastern and southeastern range limits in temperate, subtropical and tropical biomes, respectively. Main ConclusionsThese results support the BCP's tectonic isolation as a driver of peninsular endemism and a contributing factor to lineage diversification more broadly in the region. Taxonomic adjustments, including resurrectingUrosaurus microscutatus, are proposed to better reflect evolutionary history in taxonomy.
more »
« less
- Award ID(s):
- 2023723
- PAR ID:
- 10652239
- Publisher / Repository:
- JBI
- Date Published:
- Journal Name:
- Journal of Biogeography
- ISSN:
- 0305-0270
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.more » « less
-
ABSTRACT Sister taxa that have diverged and persisted in sympatry have likely been exposed to the same general environmental changes throughout their evolutionary history and may thus exhibit similar phylogeographies. Here, we compare the phylogeographic patterns of two sister species of isopods (genusTylos) that have broadly overlapping distributions but distinct habitat preferences in the supralittoral zone of Chile. The dynamic geoclimatic history of this region during the Quaternary has been implicated in shaping the evolutionary histories of other coastal taxa.Tylos spinulosusis found in sandy beaches at latitudes ~27°–30° S, whereasTylos chilensishas been found in rocky shores at ~27°–33° S and at ~39°–42° S. We sampled both species across their ranges (collectively from 20 localities) and obtained sequences from at least one mitochondrial gene for 95 T. chilensisand 41 T. spinulosus. We used phylogenetics and population genetics methods to analyze four single‐gene and one concatenated datasets: 12S rDNA (n = 130); 16S rDNA (n = 31); Cytochrome oxidase subunit I (n = 28); Cytochrome b (n = 24); concatenation of the four genes (n = 24). Both species show high levels of isolation of local populations, consistent with expectations from their limited autonomous dispersal potential. However, they exhibit strikingly different mitochondrial phylogeographic patterns.Tylos chilensisshows evidence of multiple relatively deep divergence events leading to geographically restricted lineages that appear to have persisted over multiple glaciations. Surprisingly, one lineage ofT. chilensiswas found in geographically distant localities, suggesting the possibility of human‐mediated dispersal.Tylos spinulosusappears to have undergone a relatively recent bottleneck followed by a population/range expansion. Differences in life histories and habitat preferences or stochasticity may have contributed to these striking phylogeographic differences. Finally, the high levels of differentiation and isolation among populations indicate that they are highly vulnerable to extirpation. We discuss threats to their persistence and recommendations for their conservation.more » « less
-
ABSTRACT AimThuridillaBergh, 1872, is a lineage of herbivorous sea slugs externally distinguished by bright colours and distinctive patterns of lines and spots. Recent work revealed an exceptionally rapid, cryptic radiation of 13 species in the Indo‐Pacific, raising questions about mechanisms of speciation in this group. Here, we (i) study the diversification and historical biogeography ofThuridillain a phylogenetic context and (ii) assess the role of dispersal and vicariance as the predominant mode of speciation in the genus. LocationTropical and temperate regions of the Atlantic and Indo‐Pacific. Major Taxa StudiesGastropoda, Sacoglossa. MethodsA nearly complete taxon set with 28 out of 32 recognised species ofThuridillawas used, in a total sample of 172 specimens, together with sacoglossan outgroups. Phylogenetic relationships were determined using a multi‐locus approach combining two mitochondrial (COI and 16S) and one nuclear gene (H3). Species relationships, diversification times, and ancestral geographical ranges were inferred using relaxed‐clock methods together with Bayesian discrete phylogeographic methods under three calibration scenarios using the oldest known fossil of Sacoglossa,Berthelinia elegansCrosse, 1875, and tectonic events. ResultsThuridillaspecies branched off into four major clades in all calibration scenarios: two groups from the Atlantic plus Indo‐West Pacific (5 and 6 species) and two clades from the Indo‐West Pacific (4 and 17 species). The highest diversity of the genus is in the Western Pacific (14 spp.) with a peak in the East Indies Triangle (18 spp.), whereas the Atlantic is depauperate with only four species occurring in this ocean basin. Divergence between Atlantic and Indo‐West Pacific lineages occurred in two main temporal periods: the Miocene and the Pliocene. Speciation events within the 13 cryptic species‐complex fell mostly within Plio‐Pleistocene times. Main ConclusionsThe best supported hypothesis was an Indo‐West Pacific origin ofThuridillabetween 28 and 18 Mya during the Early Miocene. In the western Pacific, speciation likely occurred during transient allopatry during Plio‐Pleistocene sea‐level fluctuations. Under the three tested calibration scenarios, the limited diversity of the Atlantic Ocean is hypothesized to be derived from Miocene vicariant events associated with the closure of the Tethys Sea, dispersal across southern Africa, or long‐distance dispersal across the East Pacific Barrier prior to the uplift of the Isthmus of Panama.Thuridillais absent in the Eastern Pacific, potentially resulting from the extinction of ancestral lineages following the uplift of the Isthmus of Panama. Near‐complete sampling of diversity and reconstruction of historical biogeography thus yielded new insight into the relative contributions of dispersal versus vicariance during speciation over the history of this widely distributed, colourful genus.more » « less
-
ABSTRACT Humans have a long history of fermenting food and beverages that led to domestication of the baker's yeast,Saccharomyces cerevisiae. Despite their tight companionship with humans, yeast species that are domesticated or pathogenic can also live on trees. Here we used over 300 genomes ofS. cerevisiaefrom oaks and other trees to determine whether tree‐associated populations are genetically distinct from domesticated lineages and estimate the timing of forest lineage divergence. We found populations on trees are highly structured within Europe, Japan, and North America. Approximate estimates of when forest lineages diverged out of Asia and into North America and Europe coincide with the end of the last ice age, the spread of agriculture, and the onset of fermentation by humans. It appears that migration from human‐associated environments to trees is ongoing. Indeed, patterns of ancestry in the genomes of three recent migrants from the trees of North America to Europe could be explained by the human response to the Great French Wine Blight. Our results suggest that human‐assisted migration affects forest populations, albeit rarely. Such migration events may even have shaped the global distribution ofS. cerevisiae. Given the potential for lasting impacts due to yeast migration between human and natural environments, it seems important to understand the evolution of human commensals and pathogens in wild niches.more » « less
An official website of the United States government
