We identified the perovskite oxides LaMn0.5Ni0.5O3 (L2MN), Gd0.5La0.5Mn0.5Ni0.5O3 (GLMN), and GdMn0.5Ni0.5O3 (G2MN) as candidate solar thermal chemical hydrogen (STCH) redox mediators from their density functional theory (DFT)-computed electronic and oxygen vacancy properties following a high-throughput computational screening of AA′BB′O6 compositions that are likely to form as perovskites and split water. At a thermal reduction temperature of 1350 °C and a water splitting temperature of 850 °C, the L2MN and GLMN perovskites produced ∼65 μmol g–1 of hydrogen per cycle with no phase degradation over three redox cycles at 40 mol % steam, while the G2MN perovskite did not produce STCH under these conditions. When reoxidized by exposure to a gas flow with a H2O:H2 molar ratio of 1333:1, which represents operating conditions where the thermodynamic driving force of water splitting is lowered by orders of magnitude relative to 40 mol % steam, the L2MN and GLMN perovskites each produced ∼35 μmol g–1 of hydrogen per cycle. Guided by DFT, we propose that L2MN and GLMN’s STCH activities arise from B-site cation antisite defects that facilitate oxygen vacancy formation and thus redox cycling, whereas the synthesized G2MN has few antisite defects and is therefore inactive for STCH.
more »
« less
This content will become publicly available on December 1, 2026
Structural effects on oxygen vacancies and redox behavior in Mn-based perovskite oxides
A series of perovskite oxides (Ln = La, Pr, Nd, Gd; A = Ba, Sr) was investigated to understand the effects of A-site cation size on oxygen vacancy formation. Quasirandom mixed structures were generated using Alloy Theoretic Automated Toolkit (ATAT), followed by density functional theory (DFT) calculations. While mixing the orthorhombic structures with the hexagonal AMnO3 structures leads to lattices and global symmetries closer to cubic, the average volume generally increases with the average ionic size, and the local bond and angles exhibit more variations due to A-site mixing. DFT calculations and a statistical model were combined to predict oxygen reduction abilities. Thermogravimetric analysis (TGA) provided experimental validation of these predictions by measuring changes in oxygen non-stoichiometry under controlled conditions. Both indicated that larger A-site ionic size differences lead to greater, consistent with the larger variation in local structures, and enhanced redox capabilities. This combined computational-experimental approach highlights the importance of local structure variation, instead of average properties, in A-site cation engineering to optimize perovskite oxides for different devices relying on oxygen vacancy redox activity.
more »
« less
- Award ID(s):
- 2328044
- PAR ID:
- 10652519
- Publisher / Repository:
- Solid State Ionics
- Date Published:
- Journal Name:
- Solid State Ionics
- Volume:
- 432
- Issue:
- C
- ISSN:
- 0167-2738
- Page Range / eLocation ID:
- 117067
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Both aliovalent doping and the charge state of multivalent lattice ions determine the oxygen non-stoichiometry ( δ ) of mixed ionic and electronic conductors (MIECs). Unfortunately, it has been challenging for both modeling and experiments to determine the multivalent ion charge states in MIECs. Here, the Fe charge state distribution was determined for various compositions and phases of the MIEC La 1−x Sr x FeO 3−δ (LSF) using the spin-polarized density functional theory (DFT)-predicted magnetic moments on Fe. It was found that electron occupancy and crystal-field-splitting-induced differences between the Fe 3d-orbitals of the square pyramidally coordinated, oxygen-vacancy-adjacent Fe atoms and the octahedrally-coordinated, oxygen-vacancy-distant-Fe atoms determined whether the excess electrons produced during oxygen vacancy formation remained localized at the first nearest neighbor Fe atoms (resulting in small oxygen vacancy polarons, as in LaFeO 3 ) or were distributed to the second-nearest-neighbor Fe atoms (resulting in large oxygen vacancy polarons, as in SrFeO 3 ). The progressively larger polaron size and anisotropic shape changes with increasing Sr resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical δ threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations cause a decrease in the mobile oxygen vacancy site fraction ( X ), both δ and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach.more » « less
-
Abstract The structural and compositional flexibility of perovskite oxides and their complex yet tunable redox properties offer unique optimization opportunities for thermochemical energy storage (TCES). To improve the relatively inefficient and empirical‐based approaches, a high‐throughput combinatorial approach for accelerated development and optimization of perovskite oxides for TCES is reported here. Specifically, thermodynamic‐based screening criteria are applied to the high‐throughput density functional theory (DFT) simulation results of over 2000 A/B‐site doped SrFeO3−δ. 61 promising TCES candidates are selected based on the DFT prediction. Of these, 45 materials with pure perovskite phases are thoroughly evaluated. The experimental results support the effectiveness of the high‐throughput approach in determining both the oxygen capacity and the oxidation enthalpy of the perovskite oxides. Many of the screened materials exhibit promising performance under practical operating conditions: Sr0.875Ba0.125FeO3−δexhibits a chemical energy storage density of 85 kJ kgABO3−1under an isobaric condition (with air) between 400 and 800 °C whereas Sr0.125Ca0.875Fe0.25Mn0.75O3−δdemonstrates an energy density of 157 kJ kgABO3−1between 400 °C/0.2 atm O2and 1100 °C/0.01 atm O2. An improved set of optimization criteria is also developed, based on a combination of DFT and experimental results, to improve the effectiveness for accelerated development of redox‐active perovskite oxides.more » « less
-
Accurate characterization of chemical strain is required to study a broad range of chemical–mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO 2−δ ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO 2−δ . The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce 3+ and two become Ce 4+ ) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce 3+ –O bonds elongate, one of the Ce 3+ –O bond shorten, and all seven of the Ce 4+ –O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO 2−δ . Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.more » « less
-
Non-stoichiometric perovskite oxides have been studied as a new family of redox oxides for solar thermochemical hydrogen (STCH) production owing to their favourable thermodynamic properties. However, conventional perovskite oxides suffer from limited phase stability and kinetic properties, and poor cyclability. Here, we report a strategy of introducing A-site multi-principal-component mixing to develop a high-entropy perovskite oxide, (La1/6Pr1/6Nd1/6Gd1/6Sr1/6Ba1/6)MnO3 (LPNGSB_Mn), which shows desirable thermodynamic and kinetics properties as well as excellent phase stability and cycling durability. LPNGSB_Mn exhibits enhanced hydrogen production (∼77.5 mmol/mol-oxide) compared to (La2/3Sr1/3)MnO3 (∼53.5 mmol / mol-oxide) in a short 1 hour redox duration and high STCH and phase stability for 50 cycles. LPNGSB_Mn possesses a moderate enthalpy of reduction (252.51–296.32 kJ / mol-oxide), a high entropy of reduction (126.95–168.85 J / mol-oxide), and fast surface oxygen exchange kinetics. All A-site cations do not show observable valence changes during the reduction and oxidation processes. This research preliminarily explores the use of one A-site high-entropy perovskite oxide for STCH.more » « less
An official website of the United States government
