skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies
ABSTRACT Global climate change has the potential to negatively impact biological systems as organisms are exposed to novel temperature regimes. Increases in annual mean temperature have been accompanied by disproportionate rates of change in temperature across seasons, and winter is the season warming most rapidly. Yet, we know relatively little about how warming will alter the physiology of overwintering organisms. Here, we simulated future warming conditions by comparing diapausing Pieris rapae butterfly pupae collected from disparate thermal environments and by exposing P. rapae pupae to acute and chronic increases in temperature. First, we compared internal freezing temperatures (supercooling points) of diapausing pupae that were developed in common-garden conditions but whose parents were collected from northern Vermont, USA, or North Carolina, USA. Matching the warmer winter climate of North Carolina, North Carolina pupae had significantly higher supercooling points than Vermont pupae. Next, we measured the effects of acute and chronic warming exposure in Vermont pupae and found that warming induced higher supercooling points. We further characterized the effects of chronic warming by profiling the metabolomes of Vermont pupae via untargeted LC-MS metabolomics. Warming caused significant changes in abundance of hundreds of metabolites across the metabolome. Notably, there were warming-induced shifts in key biochemical pathways, such as pyruvate metabolism, fructose and mannose metabolism, and β-alanine metabolism, suggesting shifts in energy metabolism and cryoprotection. These results suggest that warming affects various aspects of overwintering physiology in P. rapae and may be detrimental depending on the frequency and variation of winter warming events. Further research is needed to ascertain the extent to which the effects of warming are felt among a broader set of populations of P. rapae, and among other species, in order to better predict how insects may respond to changes in winter thermal environments.  more » « less
Award ID(s):
1750322
PAR ID:
10652886
Author(s) / Creator(s):
 ;  
Publisher / Repository:
The Company of Biologists, Ltd.
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
22
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cities are generally hotter than surrounding rural areas due to the Urban Heat Island (UHI) effect. These increases in temperature advance plant and animal phenology, development, and reproduction in the spring. However, research determining how increased temperatures affect the seasonal physiology of animals in the fall has been limited. The Northern house mosquito, Culex pipiens, is abundant in cities and transmits several pathogens including West Nile virus. Females of this species enter a state of developmental arrest, or reproductive diapause, in response to short days and low temperatures during autumn. Diapausing females halt reproduction and blood-feeding, and instead accumulate fat and seek sheltered overwintering sites. We found that exposure to increased temperatures in the lab that mimic the UHI effect induced ovarian development and blood-feeding, and that females exposed to these temperatures were as fecund as non-diapausing mosquitoes. We also found that females exposed to higher temperatures had lower survival rates in winter-like conditions, despite having accumulated equivalent lipid reserves relative to their diapausing congeners. These data suggest that urban warming may inhibit diapause initiation in the autumn, thereby extending the active biting season of temperate mosquitoes. 
    more » « less
  2. Abstract The survival of insects that are dormant in winter may either increase or decrease as a consequence of elevated winter temperatures under climate change. Warming can be deleterious when metabolism of the overwintering life stages increases to the point that energy reserves are exhausted before postoverwintering reemergence. We examined experimentally how overwintering survival of swallow bugs (Hemiptera: Cimicidae: Cimex vicarius Horvath), an ectoparasite primarily of cliff swallows (Passeriformes: Hirundinidae: Petrochelidon pyrrhonota Vieillot), was affected by a 3°C rise in mean daily temperature for populations in Oklahoma, Nebraska, and North Dakota. Adult and nymphal swallow bugs exposed to elevated temperature had an average reduction of approximately 31% in overwintering survival (from July/August to April/May), relative to controls exposed to current region-specific ambient-like conditions. Adult males in both groups survived less well in Nebraska and North Dakota than adult males in Oklahoma, but there was no consistent latitudinal effect of the elevated heat treatment. Our results indicate that projected increases in mean temperature in the Great Plains by 2050 could result in fewer swallow bugs surviving the winter and thus a reduced population size upon the arrival of their primary host in the spring, potentially affecting cliff swallow reproductive success, site use, and breeding phenology. Global climate change may alter the dynamics of host–parasite systems by reducing overall parasite abundance. 
    more » « less
  3. Abstract Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward‐moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold‐sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical–temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape‐scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical–temperate transition zones. In the 21st century, climate change‐induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America. 
    more » « less
  4. Metabolic suppression is a hallmark of animal dormancy that promotes overall energy savings. Some diapausing insects and some mammalian hibernators have regular cyclic patterns of substantial metabolic depression alternating with periodic arousal where metabolic rates increase dramatically. Previous studies, largely in mammalian hibernators, have shown that periodic arousal is driven by an increase in aerobic mitochondrial metabolism and that many molecules related to energy metabolism fluctuate predictably across periodic arousal cycles. However, it is still not clear how these rapid metabolic shifts are regulated. We first found that diapausing flesh fly pupae primarily use anaerobic glycolysis during metabolic depression but engage in aerobic respiration through the tricarboxylic acid cycle during periodic arousal. Diapausing pupae also clear anaerobic by-products and regenerate many metabolic intermediates depleted in metabolic depression during arousal, consistent with patterns in mammalian hibernators. We found that decreased levels of reactive oxygen species (ROS) induced metabolic arousal and elevated ROS extended the duration of metabolic depression. Our data suggest ROS regulates the timing of metabolic arousal by changing the activity of two critical metabolic enzymes, pyruvate dehydrogenase and carnitine palmitoyltransferase I by modulating the levels of hypoxia inducible transcription factor (HIF) and phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK). Our study shows that ROS signaling regulates periodic arousal in our insect diapasue system, suggesting the possible importance ROS for regulating other types of of metabolic cycles in dormancy as well. 
    more » « less
  5. Adaptive thermal plasticity allows organisms to adjust their physiology to cope with fluctuating environments. However, thermal plasticity is rarely studied in response to thermal variability and is often measured in a single life stage. Plasticity in response to thermal variability likely differs from responses to constant temperatures or acute stress. In addition, life stages likely differ in their plasticity and responses in one stage may be affected by the experiences in a previous stage. Increasing the resolution with which we understand thermal plasticity in response to thermal variation across ontogeny is crucial to understanding how organisms cope with the thermal variation in their environment and to estimating the capacity of plasticity to mitigate costs of rapid environmental change. We wanted to know if life stages differ in their capacity for thermal plasticity under temperature fluctuations. We reared Onthophagus taurus dung beetles in either low or high temperature fluctuation treatments and quantified thermal plasticity of metabolism of pupae and adults. We found that adults were thermally plastic and pupae were not. Next, we wanted to know if the plasticity observed in the adult life stage was affected by the thermal conditions during development. We again used low and high temperature fluctuation treatments and reared individuals in one condition through all egg to pupal stages. At eclosion, we switched half of the individuals in each treatment to the opposite fluctuation condition and, later, measured thermal plasticity of metabolism on adults. We found that temperature conditions experienced during the adult stage, but not egg to pupal stages, affects adult thermal plasticity. However, temperature fluctuations during development affect adult body size, suggesting that some aspects of the adult phenotype are decoupled from previous life stages and others are not. Our data demonstrate that life stages mount different responses to temperature variability and uniquely contribute to the adult phenotype. These findings emphasize the need to broadly integrate the life cycle into studies of phenotypic plasticity and physiology; doing so should enhance our ability to predict organismal responses to rapid global change and inform conservation efforts. 
    more » « less