skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: How similar or different are automated vehicle and human-driven vehicle crash patterns? Findings from crash sequence analysis
Award ID(s):
2222541
PAR ID:
10653226
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Accident Analysis & Prevention
Volume:
222
Issue:
C
ISSN:
0001-4575
Page Range / eLocation ID:
108239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precise crash triage is important for automated dynamic testing tools, like fuzzers. At scale, fuzzers produce millions of crashing inputs. Fuzzers use heuristics, like stack hashes, to cut down on duplicate bug reports. These heuristics are fast, but often imprecise: even after deduplication, hundreds of uniquely reported crashes can still correspond to the same bug. Remaining crashes must be inspected manually, incurring considerable effort. In this paper we present Semantic Crash Bucketing, a generic method for precise crash bucketing using program transformation. Semantic Crash Bucketing maps crashing inputs to unique bugs as a function of changing a program (i.e., a semantic delta). We observe that a real bug fix precisely identifies crashes belonging to the same bug. Our insight is to approximate real bug fixes with lightweight program transformation to obtain the same level of precision. Our approach uses (a) patch templates and (b) semantic feedback from the program to automatically generate and apply approximate fixes for general bug classes. Our evaluation shows that approximate fixes are competitive with using true fixes for crash bucketing, and significantly outperforms built-in deduplication techniques for three state of the art fuzzers. 
    more » « less
  2. null (Ed.)
    In projects centered around rare event case data, the challenge of data comprehension is greatly increased because of insufficient data for deriving insight and analysis. This is particularly the case with traffic crash occurrence, where positive events (crashes) are rare and, in most cases, no data set exists for negative events (non-crashes). One method to increase available data is negative sampling, which is the process of creating a negative event based on the absence of a positive event. In this work, four negative sampling techniques are presented with varying ratios of negative to positive data. These types of techniques are based on spatial data, temporal data, and a mixture of the two, with the data ratios acting as class balancing tools. The best performing model found was with a negative sampling technique that shifted temporal information and had an even 50/50 data split, with an F-1 score, a formulaic combination of precision and recall, of 93.68. These results are promising for Inteligent Transportation Systems (ITS) applications to inform of potential crash locations in an entire area for proactive measures to be put in place. 
    more » « less
  3. Keeping data safe in the presence of crashes is a fundamental problem. 
    more » « less