Abstract The cabbage looper,Trichoplusia ni, is a globally distributed highly polyphagous herbivore and an important agricultural pest.T. nihas evolved resistance to various chemical insecticides, and is one of the only two insect species that have evolved resistance to the biopesticideBacillus thuringiensis(Bt) in agricultural systems and has been selected for resistance to baculovirus infections. We report a 333‐Mb high‐qualityT. nigenome assembly, which has N50 lengths of scaffolds and contigs of 4.6 Mb and 140 Kb, respectively, and contains 14,384 protein‐coding genes. High‐density genetic maps were constructed to anchor 305 Mb (91.7%) of the assembly to 31 chromosomes. Comparative genomic analysis ofT. niwithBombyx morishowed enrichment of tandemly duplicated genes inT. niin families involved in detoxification and digestion, consistent with the broad host range ofT. ni. High levels of genome synteny were found betweenT. niand other sequenced lepidopterans. However, genome synteny analysis ofT. niand theT. niderived cell line High Five (Hi5) indicated extensive genome rearrangements in the cell line. These results provided the first genomic evidence revealing the high instability of chromosomes in lepidopteran cell lines known from karyotypic observations. The high‐qualityT. nigenome sequence provides a valuable resource for research in a broad range of areas including fundamental insect biology, insect‐plant interactions and co‐evolution, mechanisms and evolution of insect resistance to chemical and biological pesticides, and technology development for insect pest management.
more »
« less
Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae
Abstract Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) is a promising tool to study genomic rearrangements. However, the potential of SCRaMbLE to study genomic rearrangements is currently hindered, because a strain containing all 16 synthetic chromosomes is not yet available. Here, we construct SparLox83R, a yeast strain containing 83 loxPsym sites distributed across all 16 chromosomes. SCRaMbLE of SparLox83R produces versatile genome-wide genomic rearrangements, including inter-chromosomal events. Moreover, when combined with synthetic chromosomes, SCRaMbLE of hetero-diploids with SparLox83R leads to increased diversity of genomic rearrangements and relatively faster evolution of traits compared to hetero-diploids only with wild-type chromosomes. Analysis of the SCRaMbLEd strain with increased tolerance to nocodazole demonstrates that genomic rearrangements can perturb the transcriptome and 3D genome structure and consequently impact phenotypes. In summary, a genome with sparsely distributed loxPsym sites can serve as a powerful tool for studying the consequence of genomic rearrangements and accelerating strain engineering inSaccharomyces cerevisiae.
more »
« less
- PAR ID:
- 10653232
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary With global climate change, water scarcity threatens whole agro/ecosystems. The desert mossSyntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequencedS. caninervisgenome consists of 13 chromosomes containing 16 545 protein‐coding genes and 2666 unplaced scaffolds. Syntenic relationships within theS.caninervisandPhyscomitrellapatensgenomes indicate theS. caninervisgenome has undergone a single whole genome duplication event (compared to two forP. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history ofS. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number ofCopiaandGypsyelements. Orthogroup analyses revealed an expansion ofELIPgenes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants.more » « less
-
SUMMARY Aegilopsspecies represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships amongAegilopsspecies or betweenAegilopsand wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D‐specific fluorescencein situhybridization (FISH) probes by selecting D‐specific oligonucleotides based on the reference genome of Chinese Spring. The oligo‐based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions ofAe. tauschiifrom different origins led us to identify two novel translocations: a reciprocal 3D‐7D translocation in two accessions and a complex 4D‐5D‐7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverseAegilopsspecies. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified inAegilops umbellulata,Aegilops markgrafii, andAegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding.more » « less
-
Bateman, J (Ed.)Abstract Large genome structural variations can impact genome regulation and integrity. Repeat-rich regions like pericentric heterochromatin are vulnerable to structural rearrangements although we know little about how often these rearrangements occur over evolutionary time. Repetitive genome regions are particularly difficult to study with genomic approaches, as they are missing from most genome assemblies. However, cytogenetic approaches offer a direct way to detect large rearrangements involving pericentric heterochromatin. Here, we use a cytogenetic approach to reveal large structural rearrangements associated with the X pericentromeric region of Drosophila simulans. These rearrangements involve large blocks of satellite DNA—the 500-bp and Rsp-like satellites—which colocalize in the X pericentromeric heterochromatin. We find that this region is polymorphic not only among different strains, but between isolates of the same strain from different labs, and even within individual isolates. On the one hand, our observations raise questions regarding the potential impact of such variation at the phenotypic level and our ability to control for such genetic variability. On the other hand, this highlights the very rapid turnover of the pericentric heterochromatin most likely associated with genomic instability of the X pericentromere. It represents a unique opportunity to study the dynamics of pericentric heterochromatin, the evolution of associated satellites on a very short time scale, and to better understand how structural variation arises.more » « less
-
Komeili, Arash (Ed.)ABSTRACT Multipartite bacterial genome organization can confer advantages, including coordinated gene regulation and faster genome replication, but is challenging to maintain.Agrobacterium tumefacienslineages often contain a circular chromosome (Ch1), a linear chromosome (Ch2), and multiple plasmids. We previously observed that in some stocks of the C58 lab model, Ch1 and Ch2 were fused into a linear dicentric chromosome. Here we analyzedAgrobacteriumnatural isolates from the French Collection for Plant-Associated Bacteria and identified two strains distinct from C58 with fused chromosomes. Chromosome conformation capture identified integration junctions that were different from the C58 fusion strain. Genome-wide DNA replication profiling showed that both replication origins remained active. Transposon sequencing revealed that partitioning systems of both chromosome centromeres were essential. Importantly, the site-specific recombinase XerCD is required for the survival of the strains containing the fusion chromosome. Our findings show that replicon fusion occurs in natural environments and that balanced replication arm sizes and proper resolution systems enable the survival of such strains. IMPORTANCEMost bacterial genomes are monopartite with a single, circular chromosome. However, some species, likeAgrobacterium tumefaciens, carry multiple chromosomes. Emergence of multipartite genomes is often related to adaptation to specific niches, including pathogenesis or symbiosis. Multipartite genomes confer certain advantages; however, maintaining this complex structure can present significant challenges. We previously reported a laboratory-propagated lineage ofA. tumefaciensstrain C58 in which the circular and linear chromosomes fused to form a single dicentric chromosome. Here we discovered two geographically separated environmental isolates ofA. tumefacienscontaining fused chromosomes with integration junctions different from the C58 fusion chromosome, revealing the constraints and diversification of this process. We found that balanced replication arm sizes and the repurposing of multimer resolution systems enable the survival and stable maintenance of dicentric chromosomes. These findings reveal how multipartite genomes function across different bacterial species and the role of genomic plasticity in bacterial genetic diversification.more » « less
An official website of the United States government

