skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 23, 2026

Title: SLAP: Secure Location-proof and Anonymous Privacy-preserving Spectrum Access
The rapid advancements in wireless technology have significantly increased the demand for communication resources, leading to the development of Spectrum Access Systems (SAS). However, network regulations require disclosing sensitive user information, such as location coordinates and transmission details, raising critical privacy concerns. Moreover, as a database-driven architecture reliant on user-provided data, SAS necessitates robust location verification to counter identity and location spoofing attacks and remains a primary target for denial-of-service (DoS) attacks. Addressing these security challenges while adhering to regulatory requirements is essential.In this paper, we propose SLAP, a novel framework that ensures location privacy and anonymity during spectrum queries, usage notifications, and location-proof acquisition. Our solution includes an adaptive dual-scenario location verification mechanism with architectural flexibility and a fallback option, along with a counter-DoS approach using time-lock puzzles. We prove the security of SLAP and demonstrate its advantages over existing solutions through comprehensive performance evaluations.  more » « less
Award ID(s):
2444615
PAR ID:
10653278
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 8
Subject(s) / Keyword(s):
Spectrum Access Systems Location Privacy Anonymous Credentials' Location Proof Counter-DoS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As network services progress and mobile and IoT environments expand, numerous security concerns have surfaced for spectrum access systems (SASs). The omnipresent risk of Denial-of-Service (DoS) attacks and raising concerns about user privacy (e.g., location privacy, anonymity) are among such cyber threats. These security and privacy risks increase due to the threat of quantum computers that can compromise longterm security by circumventing conventional cryptosystems and increasing the cost of countermeasures. While some defense mechanisms exist against these threats in isolation, there is a significant gap in the state of the art on a holistic solution against DoS attacks with privacy and anonymity for spectrum management systems, especially when post-quantum (PQ) security is in mind. In this paper, we propose a new cybersecurity framework, PACDoSQ, which is the first to offer location privacy and anonymity for spectrum management with counter DoS and PQ security simultaneously. Our solution introduces the private spectrum bastion concept to exploit existing architectural features of SASs and then synergizes them with multi-server private information retrieval and PQ-secure Tor to guarantee a location-private and anonymous acquisition of spectrum information, together with hash-based client-server puzzles for counter DoS. We prove that PACDoSQ achieves its security objectives and show its feasibility via a comprehensive performance evaluation. 
    more » « less
  2. Dynamic Spectrum Access (DSA) is a promising solution to alleviate spectrum crowding. However, geolocation database-driven spectrum access system (SAS) presents privacy risks, as sensitive Incumbent User (IU) operation parameters are required to be stored by SAS in order to perform spectrum assignments properly. These sensitive operation parameters may potentially be compromised if SAS is the target of a cyber attack or SU inference attack. In this paper, we propose a novel privacy-preserving SAS-based DSA framework, Suspicion Zone SAS (SZ-SAS). This is the first framework which protects against both the scenario of inference attacks in an area with sparsely distributed IUs and the scenario of untrusted or compromised SAS. Evaluation results show SZ-SAS is capable of utilizing compatible obfuscation schemes to prevent the SU inference attack, while operating using only homomorphically encrypted IU operation parameters. 
    more » « less
  3. As part of its ongoing efforts to meet the increased spectrum demand, the Federal Communications Commission (FCC) has recently opened up 150 MHz in the 3.5 GHz band for shared wireless broadband use. Access and operations in this band, aka Citizens Broadband Radio Service (CBRS), will be managed by a dynamic spectrum access system (SAS) to enable seamless spectrum sharing between secondary users (SU s) and incumbent users. Despite its benefits, SAS’s design requirements, as set by FCC, present privacy risks to SU s, merely because SU s are required to share sensitive operational information (e.g., location, identity, spectrum usage) with SAS to be able to learn about spectrum availability in their vicinity. In this paper, we propose TrustSAS, a trustworthy framework for SAS that synergizes state-of-the-art cryptographic techniques with blockchain technology in an innovative way to address these privacy issues while complying with FCC’s regulatory design requirements. We analyze the security of our framework and evaluate its performance through analysis, simulation and experimentation. We show that TrustSAS can offer high security guarantees with reasonable overhead, making it an ideal solution for addressing SU s’ privacy issues in an operational SAS environment. 
    more » « less
  4. Apple Wireless Direct Link (AWDL) is a key protocol in Apple’s ecosystem used by over one billion iOS and macOS devices for device-to-device communications. AWDL is a proprietary extension of the IEEE 802.11 (Wi-Fi) standard and integrates with Bluetooth Low Energy (BLE) for providing services such as Apple AirDrop. We conduct the first security and privacy analysis of AWDL and its integration with BLE. We uncover several security and privacy vulnerabilities ranging from design flaws to implementation bugs leading to a man-in-the-middle (MitM) attack enabling stealthy modification of files transmitted via AirDrop, denial-of-service (DoS) attacks preventing communication, privacy leaks that enable user identification and long-term tracking undermining MAC address randomization, and DoS attacks enabling targeted or simultaneous crashing of all neighboring devices. The flaws span across AirDrop’s BLE discovery mechanism, AWDL synchronization, UI design, and Wi-Fi driver implementation. Our analysis is based on a combination of reverse engineering of protocols and code supported by analyzing patents. We provide proof-of-concept implementations and demonstrate that the attacks can be mounted using a low-cost ($20) micro:bit device and an off-the-shelf Wi-Fi card. We propose practical and effective countermeasures. While Apple was able to issue a fix for a DoS attack vulnerability after our responsible disclosure, the other security and privacy vulnerabilities require the redesign of some of their services. 
    more » « less
  5. Abstract Recent work has shown that Tor is vulnerable to attacks that manipulate inter-domain routing to compromise user privacy. Proposed solutions such as Counter-RAPTOR [29] attempt to ameliorate this issue by favoring Tor entry relays that have high resilience to these attacks. However, because these defenses bias Tor path selection on the identity of the client, they invariably leak probabilistic information about client identities. In this work, we make the following contributions. First, we identify a novel means to quantify privacy leakage in guard selection algorithms using the metric of Max-Divergence. Max-Divergence ensures that probabilistic privacy loss is within strict bounds while also providing composability over time. Second, we utilize Max-Divergence and multiple notions of entropy to understand privacy loss in the worst-case for Counter-RAPTOR. Our worst-case analysis provides a fresh perspective to the field, as prior work such as Counter-RAPTOR only analyzed average case-privacy loss. Third, we propose modifications to Counter-RAPTOR that incorporate worst-case Max-Divergence in its design. Specifically, we utilize the exponential mechanism (a mechanism for differential privacy) to guarantee a worst-case bound on Max-Divergence/privacy loss. For the quality function used in the exponential mechanism, we show that a Monte-Carlo sampling-based method for stochastic optimization can be used to improve multi-dimensional trade-offs between security, privacy, and performance. Finally, we demonstrate that compared to Counter-RAPTOR, our approach achieves an 83% decrease in Max-Divergence after one guard selection and a 245% increase in worst-case Shannon entropy after 5 guard selections. Notably, experimental evaluations using the Shadow emulator shows that our approach provides these privacy benefits with minimal impact on system performance. 
    more » « less