Networks offer a compact representation of complex systems such as social, communication, and biological systems. Traditional network models are often inadequate to capture the diverse nature of contemporary networks, which may exhibit temporal variation and multiple types of interactions between entities. Multilayer networks (MLNs) provide a more comprehensive representation by allowing interactions between nodes to be represented by different types of links, each reflecting a distinct type of interaction. Community detection reveals meaningful structure and provides a better understanding of the overall functioning of networks. Current approaches to multilayer community detection are either limited to community detection over the aggregated network or are extensions of single-layer community detection methods with simplifying assumptions such as a common community structure across layers. Moreover, most of the existing methods are limited to multiplex networks with no inter-layer edges. In this paper, we introduce a spectral-clustering-based community detection method for two-layer MLNs. The problem of detecting the community structure is formulated as an optimization problem where the normalized cut for each layer is minimized simultaneously with the normalized cut for the bipartite network along with regularization terms that ensure the consistency of the within- and across-layer community structures. The proposed method is evaluated on both synthetic and real networks and compared to state-of-the-art methods. MLNs. The problem of detecting the community structure is formulated as an optimization problem where the normalized cut for each layer is minimized simultaneously with the normalized cut for the bipartite network along with regularization terms that ensure the consistency of the intra- and inter-layer community structures. The proposed method is evaluated on both synthetic and real networks and compared to state-of-the-art methods.
more »
« less
This content will become publicly available on December 1, 2026
Multiplexity amplifies geometry in networks
Many real-world networks are multilayer, with nontrivial correlations across layers. Here, we show that these correlations amplify geometry in networks. We focus on mutual clustering—a measure of the number of triangles that are present in all layers among the same triplets of nodes—and find that this clustering is abnormally high in many real-world networks, even when clustering in each individual layer is weak. We explain this unexpected phenomenon using a simple multiplex network model with latent geometry: Links that are most congruent with this geometry are the ones that persist across layers, amplifying the cross-layer triangle overlap. This result reveals a different dimension in which multilayer networks are radically distinct from their constituent layers.
more »
« less
- Award ID(s):
- 2311160
- PAR ID:
- 10653501
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2643-1564
- Page Range / eLocation ID:
- L042046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Real-world systems in epidemiology, social sciences, power transportation, economics and engineering are often described as multilayer networks. Here we first define and compute the symmetries of multilayer networks, and then study the emergence of cluster synchronization in these networks. We distinguish between independent layer symmetries, which occur in one layer and are independent of the other layers, and dependent layer symmetries, which involve nodes in different layers. We study stability of the cluster synchronous solution by decoupling the problem into a number of independent blocks and assessing stability of each block through a Master Stability Function. We see that blocks associated with dependent layer symmetries have a different structure to the other blocks, which affects the stability of clusters associated with these symmetries. Finally, we validate the theory in a fully analog experiment in which seven electronic oscillators of three kinds are connected with two kinds of coupling.more » « less
-
Multilayer networks describe the rich ways in which nodes are related by accounting for different relationships in separate layers. These multiple relationships are naturally represented by an adjacency tensor. In this work we study the use of the nonnegative Tucker decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that naturally generalizes existing stochastic block models of multilayer networks. Quantifying interdependencies between layers can identify redundancies in the structure of a network, indicate relationships between disparate layers, and potentially inform survey instruments for collecting social network data. We propose definitions of layer independence, dependence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker decompositions. Using both synthetic and real-world data, we evaluate the use and interpretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that using expectation maximization (EM) to maximize the log-likelihood under the NNTuck is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL loss, extending a previously known equivalence from nonnegative matrices to nonnegative tensors.more » « less
-
Prateek Jain (Ed.)The paper considers a Mixture Multilayer Stochastic Block Model (MMLSBM), where layers can be partitioned into groups of similar networks, and networks in each group are equipped with a distinct Stochastic Block Model. The goal is to partition the multilayer network into clusters of similar layers, and to identify communities in those layers. Jing et al. (2020) introduced the MMLSBM and developed a clustering methodology, TWIST, based on regularized tensor decomposition. The present paper proposes a different technique, an alternating minimization algorithm (ALMA), that aims at simultaneous recovery of the layer partition, together with estimation of the matrices of connection probabilities of the distinct layers. Compared to TWIST, ALMA achieves higher accuracy, both theoretically and numerically.more » « less
-
Prateek Jain (Ed.)The paper considers a Mixture Multilayer Stochastic Block Model (MMLSBM), where layers can be partitioned into groups of similar networks, and networks in each group are equipped with a distinct Stochastic Block Model. The goal is to partition the multilayer network into clusters of similar layers, and to identify communities in those layers. Jing et al. (2020) introduced the MMLSBM and developed a clustering methodology, TWIST, based on regularized tensor decomposition. The present paper proposes a different technique, an alternating minimization algorithm (ALMA), that aims at simultaneous recovery of the layer partition, together with estimation of the matrices of connection probabilities of the distinct layers. Compared to TWIST, ALMA achieves higher accuracy, both theoretically and numerically.more » « less
An official website of the United States government
