Abstract Entangled matter provides intriguing perspectives in terms of deformation mechanisms, mechanical properties, assembly and disassembly. However, collective entanglement mechanisms are complex, occur over multiple length scales, and they are not fully understood to this day. In this report, we propose a simple pick-up test to measure entanglement in staple-like particles with various leg lengths, crown-leg angles, and backbone thickness. We also present a new “throw-bounce-tangle” model based on a 3D geometrical entanglement criterion between two staples, and a Monte Carlo approach to predict the probabilities of entanglement in a bundle of staples. This relatively simple model is computationally efficient, and it predicts an average density of entanglement which is consistent with the entanglement strength measured experimentally. Entanglement is very sensitive to the thickness of the backbone of the staples, even in regimes where that thickness is a small fraction (< 0.04) of the other dimensions. We finally demonstrate an interesting use for this model to optimize staple-like particles for maximum entanglement. New designs of tunable “entangled granular metamaterials” can produce attractive combinations of strength, extensibility, and toughness that may soon outperform lightweight engineering materials such as solid foams and lattices.
more »
« less
This content will become publicly available on July 1, 2026
Tunable entanglement and strength with engineered staple-like particles: Experiments and discrete element models
Entangled matter displays unusual and attractive properties and mechanisms: tensile strength, capabilities for assembly and disassembly, damage tolerance. While some of the attributes and mechanisms share some traits with traditional granular materials, fewer studies have focused on entanglement and strength and there are large gaps in our understanding of the mechanics of these materials. In this report we focus on the tensile properties and mechanics of bundles made of staple-like particles, and particularly on the effect of adjusting the angle between the legs and the crown in individual staples. Our experiments, combined with discrete element models, show competing mechanisms between entanglement strength and geometric engagement between particles, giving rise to an optimum crown-leg angle that maximizes strength. We also show that tensile forces are transmitted by a small fraction of the staples, which is organized in only 1-3 force chains. The formation and breakage of these chains is highly dynamic: as force chains break, they are replaced by fresh ones which were previously mechanically invisible. Entangled matter offers interesting perspectives in terms of materials design which can lead to unusual combination of properties: simultaneous strength and toughness, controlled assembly and disassembly, re-conformability, recyclability.
more »
« less
- Award ID(s):
- 2033991
- PAR ID:
- 10653682
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of the Mechanics and Physics of Solids
- Volume:
- 200
- Issue:
- C
- ISSN:
- 0022-5096
- Page Range / eLocation ID:
- 106127
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The design of amorphous entangled systems, specifically from soft and active materials, has the potential to open exciting new classes of active, shape-shifting, and task-capable ‘smart’ materials. However, the global emergent mechanics that arise from the local interactions of individual particles are not well understood. In this study, we examine the emergent properties of amorphous entangled systems in an in silico collection of u-shaped particles (“smarticles”) and in living entangled aggregate of worm blobs ( L. variegatus ). In simulations, we examine how material properties change for a collective composed of smarticles as they undergo different forcing protocols. We compare three methods of controlling entanglement in the collective: external oscillations of the ensemble, sudden shape-changes of all individuals, and sustained internal oscillations of all individuals. We find that large-amplitude changes of the particle's shape using the shape-change procedure produce the largest average number of entanglements, with respect to the aspect ratio ( l / w ), thus improving the tensile strength of the collective. We demonstrate applications of these simulations by showing how the individual worm activity in a blob can be controlled through the ambient dissolved oxygen in water, leading to complex emergent properties of the living entangled collective, such as solid-like entanglement and tumbling. Our work reveals principles by which future shape-modulating, potentially soft robotic systems may dynamically alter their material properties, advancing our understanding of living entangled materials, while inspiring new classes of synthetic emergent super-materials.more » « less
-
Typical granular materials are far from optimal in terms of mechanical performance: Random packing leads to poor load transfer in the form of thin and dispersed force lines within the material, to inhomogeneous jamming, and to strain localization. In addition, localized contacts between individual grains result in low stiffness, strength and brittleness. Here we propose a granular material that simultaneously embodies three approaches to increase strength: geometrical design of individual grains, crystallization, and infiltration by an adhesive. Using mechanical vibrations, we assembled millimeter-scale 3D printed grains with rhombic dodecahedral shapes into fully dense FCC granular crystals. We then infiltrated the granular structure with a tacky, polyacrylic adhesive that is orders of magnitude weaker than the grains, but which provides sustained adhesion over large interfacial displacements. The resulting material is a fully dense, free-standing space filling granular crystal. Compressive tests show that these granular crystals are up to 60 times stronger than randomly packed cohesive spheres and they display a rich set of mechanisms: Nonlinear deformations, crystal plasticity reminiscent of atomistic mechanisms, cross-slip, shear-induced dilatancy, micro-buckling, and tensile strength. To capture some of these mechanisms we developed a multiscale model that incorporates local cohesion between grains, resolved shear and normal stresses on available slip planes, and prediction of compressive strength as function of loading orientation. The predicted strength is highly anisotropic and agrees well with the compression experiments. Once fully understood and harnessed, we envision that these mechanisms will lead to granular engineering materials with unusual combinations of mechanical performances attractive for many applications.more » « less
-
null (Ed.)Suprastructures at the colloidal scale must be assembled with precise control over local interactions to accurately mimic biological complexes. The toughest design requirements include breaking the symmetry of assembly in a simple and reversible fashion to unlock functions and properties so far limited to living matter. We demonstrate a simple experimental technique to program magnetic field–induced interactions between metallodielectric patchy particles and isotropic, nonmagnetic “satellite” particles. By controlling the connectivity, composition, and distribution of building blocks, we show the assembly of three-dimensional, multicomponent supraparticles that can dynamically reconfigure in response to change in external field strength. The local arrangement of building blocks and their reconfigurability are governed by a balance of attraction and repulsion between oppositely polarized domains, which we illustrate theoretically and tune experimentally. Tunable, bulk assembly of colloidal matter with predefined symmetry provides a platform to design functional microstructured materials with preprogrammable physical and chemical properties.more » « less
-
This paper presents a novel idea to enable superhydrophobic (SHPo) surfaces with exceptional resistance to cutting while remaining soft and stretchable. For the first time, we achieve these unprecedented mechanical properties through strategic heterogeneous integration of a highly entangled polymeric substrate with a top layer of SU-8 micro-pillars. To realize resistance to cutting in soft materials, our innovation utilizes a polymer within which the entanglement outnumbered the crosslinks so that the cutting stress can be redistributed along the long polymer chains and to many other chains. We demonstrate the unique cut-resistant property of the highly entangled hydrogel, the integration of the hydrogel to fabricate SHPo surfaces, and water-repellency tests against cutting.more » « less
An official website of the United States government
