skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Model Falsification from a Bayesian Viewpoint with Applications to Parameter Inference and Model Selection of Dynamical Systems
The objective of this work is to provide a Bayesian re-interpretation to model falsification. We show that model falsification can be viewed as an approximate Bayesian computation (ABC) approach when hypotheses (models) are sampled from a prior. To achieve this, we recast model falsifiers as discrepancy metrics and density kernels such that they may be adopted within ABC and generalized ABC (GABC) methods. We call the resulting frameworks model falsified ABC and GABC, respectively. Moreover, as a result of our reinterpretation, the set of unfalsified models can be shown to be realizations of an approximate posterior. We consider both error and likelihood domain model falsification in our exposition. Model falsified (G)ABC is used to tackle two practical inverse problems albeit with synthetic measurements. The first type of problem concerns parameter estimation and includes applications of ABC to the inference of a statistical model where the likelihood can be difficult to compute, and the identification of a cubic-quintic dynamical system. The second type of example involves model selection for the base isolation system of a four degree-of-freedom base isolated structure. The performance of model falsified ABC and GABC are compared with Bayesian inference. The results show that model falsified (G)ABC can be used to solve inverse problems in a computationally efficient manner. The results are also used to compare the various falsifiers in their capability of approximating the posterior and some of its important statistics. Further, we show that model falsifier based density kernels can be used in kernel regression to infer unknown model parameters and compute structural responses under epistemic uncertainty.  more » « less
Award ID(s):
1663667
PAR ID:
10653778
Author(s) / Creator(s):
 ;  
Publisher / Repository:
ASCE
Date Published:
Journal Name:
Journal of Engineering Mechanics
Volume:
150
Issue:
6
ISSN:
0733-9399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In practice, it is essential to compare and rank candidate policies offline before real-world deployment for safety and reliability. Prior work seeks to solve this offline policy ranking (OPR) problem through value-based methods, such as Off-policy evaluation (OPE). However, they fail to analyze special case performance (e.g., worst or best cases), due to the lack of holistic characterization of policies’ performance. It is even more difficult to estimate precise policy values when the reward is not fully accessible under sparse settings. In this paper, we present Probabilistic Offline Policy Ranking (POPR), a framework to address OPR problems by leveraging expert data to characterize the probability of a candidate policy behaving like experts, and approximating its entire performance posterior distribution to help with ranking. POPR does not rely on value estimation, and the derived performance posterior can be used to distinguish candidates in worst-, best-, and average-cases. To estimate the posterior, we propose POPR-EABC, an Energy-based Approximate Bayesian Computation (ABC) method conducting likelihood-free inference. POPR-EABC reduces the heuristic nature of ABC by a smooth energy function, and improves the sampling efficiency by a pseudo-likelihood. We empirically demonstrate that POPR-EABC is adequate for evaluating policies in both discrete and continuous action spaces across various experiment environments, and facilitates probabilistic comparisons of candidate policies before deployment. 
    more » « less
  2. ABSTRACT Approximate Bayesian computation (ABC) methods are applicable to statistical models specified by generative processes with analytically intractable likelihoods. These methods try to approximate the posterior density of a model parameter by comparing the observed data with additional process‐generated simulated data sets. For computational benefit, only the values of certain well‐chosen summary statistics are usually compared, instead of the whole data set. Most ABC procedures are computationally expensive, justified only heuristically, and have poor asymptotic properties. In this article, we introduce a new empirical likelihood‐based approach to the ABC paradigm called ABCel. The proposed procedure is computationally tractable and approximates the target log posterior of the parameter as a sum of two functions of the data—namely, the mean of the optimal log‐empirical likelihood weights and the estimated differential entropy of the summary functions. We rigorously justify the procedure via direct and reverse information projections onto appropriate classes of probability densities. Past applications of empirical likelihood in ABC demanded constraints based on analytically tractable estimating functions that involve both the data and the parameter; although by the nature of the ABC problem such functions may not be available in general. In contrast, we use constraints that are functions of the summary statistics only. Equally importantly, we show that our construction directly connects to the reverse information projection and estimate the relevant differential entropy by a k‐NN estimator. We show that ABCel is posterior consistent and has highly favorable asymptotic properties. Its construction justifies the use of simple summary statistics like moments, quantiles, and so forth, which in practice produce accurate approximation of the posterior density. We illustrate the performance of the proposed procedure in a range of applications. 
    more » « less
  3. We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform. 
    more » « less
  4. We propose that approximate Bayesian algorithms should optimize a new criterion, directly derived from the loss, to calculate their approximate posterior which we refer to as pseudo-posterior. Unlike standard variational inference which optimizes a lower bound on the log marginal likelihood, the new algorithms can be analyzed to provide loss guarantees on the predictions with the pseudo-posterior. Our criterion can be used to derive new sparse Gaussian process algorithms that have error guarantees applicable to various likelihoods. 
    more » « less
  5. We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximuma posterioriprobability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages. 
    more » « less