skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Association of the Recurrent ATP1 A1 Variant p.Gly549Arg With Intermediate CMT and Loss of Na,K-ATPase Function
Charcot-Marie-Tooth (CMT) disease comprises a group of inherited peripheral neuropathies caused by pathogenic variants in various genes, including ATP1A1. This gene encodes the ubiquitous α1 subunit of the sodium pump that generates the Na + and K + gradients that are essential for neuronal survival and excitability. We present the clinical cases of 2 unrelated patients with the same ATP1A1 variant causing dominant intermediate CMT disease and the functional characterization of the variant in the heterologous expression system.  more » « less
Award ID(s):
2003251
PAR ID:
10653853
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Association of Neurology
Date Published:
Journal Name:
Neurology Genetics
Volume:
11
Issue:
5
ISSN:
2376-7839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundCharcot–Marie–Tooth disease (CMT) is a genetically and clinically heterogeneous group of inherited neuropathies. Monoallelic pathogenic variants inATP1A1were associated with axonal and intermediate CMT.ATP1A1encodes for the catalytic α1 subunit of the Na+/ K+ATPase. Besides neuropathy, other associated phenotypes are spastic paraplegia, intellectual disability, and renal hypomagnesemia. We hereby report the first demyelinating CMT case due to a novelATP1A1variant. MethodsWhole-exome sequencing on the patient’s genomic DNA and Sanger sequencing to validate and confirm the segregation of the identified p.P600RATP1A1variation were performed. To evaluate functional effects, blood-derived mRNA and protein levels ofATP1A1and the auxiliary β1 subunit encoded byATP1B1were investigated. The ouabain-survival assay was performed in transfected HEK cells to assess cell viability, and two-electrode voltage clamp studies were performed in Xenopus oocytes. ResultsThe variant was absent in the local and global control datasets, falls within a highly conserved protein position, and is in a missense-constrained region. The expression levels of ATP1A1 and ATP1B1 were significantly reduced in the patient compared to healthy controls. Electrophysiology indicated thatATP1A1p.P600Rinjected Xenopus oocytes have reduced Na+/ K+ATPase function. Moreover, HEK cells transfected with a construct encodingATP1A1p.P600Rharbouring variants that confers ouabain insensitivity displayed a significant decrease in cell viability after ouabain treatment compared to the wild type, further supporting the pathogenicity of this variant. ConclusionOur results further confirm the causative role ofATP1A1in peripheral neuropathy and broaden the mutational and phenotypic spectrum ofATP1A1-associated CMT. 
    more » « less
  2. null (Ed.)
    Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this “impaired mobility” model of the disease. 
    more » « less
  3. A mixed-metal ternary chalcogenide, cobalt molybdenum telluride (CMT), has been identified as an efficient tri-functional electrocatalyst for seawater splitting, leading to enhanced oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR). The CMT was synthesized by a single step hydrothermal technique. Detailed electrochemical studies of the CMT-modified electrodes showed that CMT has a promising performance for OER in the simulated seawater solutions, exhibiting a small overpotential of 385 mV at 20 mA cm−2, and superior catalyst durability for prolonged period of continuous oxygen evolution. Interestingly, while gas chromatography analysis confirmed the evolution of oxygen in an anodic chamber, it showed that there was no chlorine evolution from these electrodes in alkaline seawater, highlighting the novelty of this catalyst. CMT also displayed remarkable ORR activity in simulated seawater as indicated by its four-electron reduction pathway forming water as the dominant product. One of the primary challenges of seawater splitting is chlorine evolution from the oxidation of dissolved chloride salts. The CMT catalyst successfully and significantly lowers the water oxidation potential, thereby separating the chloride and water oxidation potentials by a larger margin. These results suggest that CMT can function as a highly active tri-functional electrocatalyst with significant stability, making it suitable for clean energy generation and environmental applications using seawater. 
    more » « less
  4. Abstract ThePTCD3gene product (protein PTCD3 or MRPS39) forms the entry channel of the mitochondrial small ribosomal subunit and binds to single‐stranded mRNA. Here, we expand on the clinical manifestations ofPTCD3pathogenic variants by describing an early‐onset patient with Leigh‐like syndrome and two patients with milder form of disease, with combined oxidative phosphorylation deficiency. A 34‐year‐old male and his 33‐year‐old sister both have horizontal nystagmus, pronounced rough tremor, truncal ataxia, dysmetria, spasticity and hyperreflexia. The basal respiration rate decreased significantly for the male patient and his mother (p < 0.0001) compared to the controls. The whole genome sequencing analysis revealed two heterozygous variants in thePTCD3: c.1182T>A, p.(Tyr394Ter) and c.805C>T, p.(His269Tyr). Tyr394Ter variant ablates the C‐terminal half of the protein, including a significant portion of the central fold. In silico modelling for the variant His269Tyr shows that the inclusion of the slightly larger tyrosine sidechain is well tolerated, with no significant change in either the position or the movement of the surrounding area. The third case is a 9‐year‐old boy, who has a global developmental delay, central hypotonia, hyperreflexia and abnormal MRI.PTCD3pathogenic variant c.538+4A>G was identified by whole exome sequencing. To test the variant's effect on splicing, an RT‐PCR experiment was performed, which revealed skipping of an out‐of‐frame exon 7. 
    more » « less
  5. Abstract The human angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) proteins play key roles in the cellular internalization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus responsible for the coronavirus disease of 2019 (COVID-19) pandemic. We set out to functionally characterize the ACE2 and TMPRSS2 protein abundance for variant alleles encoding these proteins that contained non-synonymous single-nucleotide polymorphisms (nsSNPs) in their open reading frames (ORFs). Specifically, a high-throughput assay, deep mutational scanning (DMS), was employed to test the functional implications of nsSNPs, which are variants of uncertain significance in these two genes. Specifically, we used a ‘landing pad’ system designed to quantify the protein expression for 433 nsSNPs that have been observed in the ACE2 and TMPRSS2 ORFs and found that 8 of 127 ACE2, 19 of 157 TMPRSS2 isoform 1 and 13 of 149 TMPRSS2 isoform 2 variant proteins displayed less than ~25% of the wild-type protein expression, whereas 4 ACE2 variants displayed 25% or greater increases in protein expression. As a result, we concluded that nsSNPs in genes encoding ACE2 and TMPRSS2 might potentially influence SARS-CoV-2 infectivity. These results can now be applied to DNA sequence data for patients infected with SARS-CoV-2 to determine the possible impact of patient-based DNA sequence variation on the clinical course of SARS-CoV-2 infection. 
    more » « less