skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Role of Phages in Past Molecular Biology and Potentially in Future Biomedicine
Viruses that infect bacteria (bacteriophages or phages) have a history of use in both biomedicine and basic molecular biology. Here, I briefly outline the pre-1940 use of phages in biomedicine and then more comprehensively outline the subsequent use of phages in determining the basics of molecular biology. Finally, I outline work that appears to form the foundation for a future, phage-enhanced biomedicine that generally extends medicine in the areas of anti-bacterial therapy (including vaccinology), anti-tumor therapy, and understanding the basic process of amyloid-associated neurodegenerative diseases. The following are general conclusions. (1) In the future, the discipline of phage-based biomedicine will be enhanced by more extensive merging with the discipline of basic phage biology (including molecular biology) and evolution. These two disciplines have been separated post-1940. (2) Biomedicine, in general, will be assisted if the focus is on key problems and key observations, thereby leaving details to later work. (3) Simplicity of strategy is a virtue that can be implemented and should be pursued with phages. (4) Capacity for directed evolution provides phages with generative (artificial intelligence-like) means for increasing biomedical effectiveness without using human design. Two related quotes set the stage (references at the end of the text). “But see that the imagination of nature is far, far greater than the imagination of man” (physicist Richard Feynman). “Nature, in all its variations and seeming paradoxes, speaks to those who pay attention and gives hints and clues to basic facts” (a thought attributed to Felix d’Herelle, a self-trained biologist who developed biological phage isolation and characterization). The integration of natural phenomenon-focused basic science and medical practice is an underlying theme.  more » « less
Award ID(s):
2409676
PAR ID:
10653920
Author(s) / Creator(s):
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Encyclopedia
Volume:
5
Issue:
2
ISSN:
2673-8392
Page Range / eLocation ID:
58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Andam, Cheryl P (Ed.)
    The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains ofP. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages. IMPORTANCE Pseudomonas aeruginosais a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications. 
    more » « less
  2. Abstract The rise of antibiotic resistance motivates a revived interest in phage therapy. However, bacteria possess dozens of anti-bacteriophage immune systems that confer resistance to therapeutic phages. Chemical inhibitors of these anti-phage immune systems could be employed as adjuvants to overcome resistance in phage-based therapies. Here, we report that anti-phage systems can be selectively inhibited by small molecules, thereby sensitizing phage-resistant bacteria to phages. We discovered a class of chemical inhibitors that inhibit the type II Thoeris anti-phage immune system. These inhibitors block the biosynthesis of a histidine-ADPR intracellular ‘alarm’ signal by ThsB and prevent ThsA from arresting phage replication. These inhibitors promiscuously inhibit type II Thoeris systems from diverse bacteria—including antibiotic-resistant pathogens. Chemical inhibition of the Thoeris defense improved the efficacy of a model phage therapy against a phage-resistant strain ofP. aeruginosain a mouse infection, suggesting a therapeutic potential. Furthermore, these inhibitors may be employed as chemical tools to dissect the importance of the Thoeris system for phage defense in natural microbial communities. 
    more » « less
  3. Dudley, Edward G. (Ed.)
    ABSTRACT Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes . Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages. IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes . This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes . This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy. 
    more » « less
  4. The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli , Pseudomonas aeruginosa , and Vibrio cholerae , and the plant pathogen Xanthomonas campestris . The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells. 
    more » « less
  5. Bacteriophages (phages) are the most abundant biological entities in the biosphere. As viruses that solely infect bacteria, phages have myriad healthcare and agricultural applications including phage therapy and antibacterial treatments in the foodservice industry. Phage therapy has been explored since the turn of the twentieth century but was no longer prioritized following the invention of antibiotics. As we approach a post-antibiotic society, phage therapy research has experienced a significant resurgence for the use of phages against antibiotic-resistant bacteria, a growing concern in modern medicine. Phages are extraordinarily diverse, as are their host receptor targets. Flagellotropic (flagellum-dependent) phages begin their infection cycle by attaching to the flagellum of their motile host, although the later stages of the infection process of most of these phages remain elusive. Flagella are helical appendages required for swimming and swarming motility and are also of great importance for virulence in many pathogenic bacteria of clinical relevance. Not only is bacterial motility itself frequently important for virulence, as it allows pathogenic bacteria to move toward their host and find nutrients more effectively, but flagella can also serve additional functions including mediating bacterial adhesion to surfaces. Flagella are also a potent antigen recognized by the human immune system. Phages utilizing the flagellum for infections are of particular interest due to the unique evolutionary tradeoff they force upon their hosts: by downregulating or abolishing motility to escape infection by a flagellotropic phage, a pathogenic bacterium would also likely attenuate its virulence. This factor may lead to flagellotropic phages becoming especially potent antibacterial agents. This review outlines past, present, and future research of flagellotropic phages, including their molecular mechanisms of infection and potential future applications. 
    more » « less