skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Origin of the Ancient, Large-scale Cold Front in the Perseus Cluster of Galaxies
Abstract The intracluster medium of the Perseus Cluster exhibits spiral-shaped X-ray surface brightness discontinuities known as “cold fronts,” which simulations indicate are caused by the sloshing motion of the gas after the passage of a subcluster. Recent observations of Perseus have shown that these fronts extend to large radii. In this work, we present simulations of the formation of sloshing cold fronts in Perseus using the AREPO magnetohydrodynamics code, to produce a plausible scenario for the formation of the large front at a radius of 700 kpc. Our simulations explore a range of subcluster masses and impact parameters. We find that low-mass subclusters cannot generate a cold front that can propagate to such a large radius, and that small impact parameters create too much turbulence, which leads to the disruption of the cold front before it reaches such a large distance. Subclusters that make only one core passage produce a stable initial front that expands to large radii, but without a second core passage of the subcluster, other fronts are not created at a later time in the core region. We find a small range of simulations with subclusters with mass ratios ofR∼ 1:5 and an initial impact parameter ofθ∼ 20°–25° that not only produce the large cold front but a second set in the core region at later times. These simulations indicate that the “ancient” cold front is ∼6–8.5 Gyr old. For the simulations providing the closest match with observations, the subcluster has completely merged into the main cluster.  more » « less
Award ID(s):
2009227
PAR ID:
10654199
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
974
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of passing atmospheric cold fronts with different orientations and moving directions on the hydrodynamics of the Wax Lake Delta (WLD) were analyzed by considering the influence of river discharge, cold front moving direction, wind magnitude, and Coriolis effect. The study employs numerical simulations using the Delft-3D model and an analytical model to explore water volume transport, water level variations, water circulation, and particle trajectories during nine cold front events. Results indicate that cold fronts cause a decrease in the average contribution of the water transport through western channels and an increase of that in central and eastern channels. A westerly cold front with an average wind speed of ~12 m/s can increase water transport through eastern channels by about 35%. During the passage of a cold front, the intertidal islands between the main channels and East Bay experience the largest fluctuations in subtidal water levels, which can be attributed to the influence of local wind stress. For example, a westerly cold front can result in a water level variation of approximately 0.45 m over some of the intertidal Islands and 0.65 m in the East Bay. Results also show that the subtidal water circulation in the WLD is correlated with the Wax Lake Outlet (WLO) discharge and wind magnitude. The findings illustrate that when WLO discharge is low, the impact of cold fronts is more pronounced, and cold fronts from the west have a greater impact compared to those from the northwest and north. This study identifies the significance of WLO discharge and Coriolis force by the trajectories of particles in the water column. The results of the simulations indicate that under low WLO discharge (less than 2000 m3/s), the majority of particles are found to exit through Campground Pass instead of Gadwall because of the dominance of Coriolis force. To summarize, this study assesses the impact of cold fronts on the hydrodynamics of the Wax Lake Delta, underscoring the contributions of multiple factors, including the cold front moving direction, river discharge, wind strength, and Coriolis force. 
    more » « less
  2. Abstract We present initial results from extremely well-resolved 3D magnetohydrodynamical simulations of idealized galaxy clusters, conducted using the AthenaPK code on the Frontier exascale supercomputer. These simulations explore the self-regulation of galaxy groups and cool-core clusters by cold gas-triggered active galactic nucleus (AGN) feedback incorporating magnetized kinetic jets. Our simulation campaign includes simulations of galaxy groups and clusters with a range of masses and intragroup and intracluster medium properties. In this paper, we present results that focus on a Perseus-like cluster. We find that the simulated clusters are self-regulating, with the cluster cores staying at a roughly constant thermodynamic state and AGN jet power staying at physically reasonable values (≃1044–1045erg s–1) for billions of years without a discernible duty cycle. These simulations also produce significant amounts of cold gas, with calculations having strong magnetic fields generally both promoting cold gas formation and allowing cold gas out to much larger cluster-centric radii (≃100 kpc) than simulations with weak or no fields (≃10 kpc), and also having more filamentary cold gas morphology. We find that AGN feedback significantly increases the strength of magnetic fields at the center of the cluster. We also find that the magnetized turbulence generated by the AGN results in turbulence where the velocity power spectra are tied to AGN activity, whereas the magnetic energy spectra are much less impacted after reaching a stationary state. 
    more » « less
  3. Atmospheric frontal passage is a common meteorological event that can significantly affect hydrodynamics in coastal environments, including the hydrological connectivity between channels and floodplains that regulates material transport in river deltas. This study is focused on the influence of atmospheric cold fronts on the hydrological connectivity between channels and floodplains within the Wax Lake Delta using the Delft3D FM model. The results demonstrate a substantial effect of passing cold fronts on the exchange of water and transport fraction between the primary channels and floodplains. This impact is intricately connected to the morphodynamical characteristics of the floodplains, the intensity of cold fronts, river discharge, Coriolis force, and tidal currents. The passing cold fronts can enhance or reverse the direction of water exchange between channels and floodplains. For floodplains, the passage of cold fronts can lead to an increase in the rate of water exchange by as much as five times. In the WLD, a substantial fraction of water, 39-58%, is flowing through the floodplains to the bay at the delta front influenced by the prevailing discharge, although there is a significant spatial heterogeneity. Passing cold fronts can alter the transport distribution, depending on the phase of the front. An increase in river discharge tends to bolster floodplain connectivity and lessen the effects of cold fronts. Conversely, decreased river discharge results in reduced connectivity and exacerbates the fluctuations induced by cold fronts. Moreover, the findings indicate that from the apex to downstream, the contribution of channels decreases as they become shallower, while the role of the floodplains increases, leading to a less distinct demarcation between channels and floodplains. It has also been noted that an increase in river discharge correlates with an increased contribution from floodplains to transfer water to the bay. 
    more » « less
  4. Two main mechanisms have classically been proposed for the formation of runaway stars. In the binary supernova scenario (BSS), a massive star in a binary explodes as a supernova, ejecting its companion. In the dynamical ejection scenario, a star is ejected during a strong dynamical encounter between multiple stars. We propose a third mechanism for the formation of runaway stars: the subcluster ejection scenario (SCES), where a subset of stars from an infalling subcluster is ejected out of the cluster via a tidal interaction with the contracting gravitational potential of the assembling cluster. We demonstrate the SCES in a star-by-star simulation of the formation of a young massive cluster from a 106Mgas cloud using theTORCHframework. This star cluster forms hierarchically through a sequence of subcluster mergers determined by the initial turbulent, spherical conditions of the gas. We find that these mergers drive the formation of runaway stars in our model. Late-forming subclusters fall into the central potential, where they are tidally disrupted, forming tidal tails of runaway stars that are distributed highly anisotropically. Runaways formed in the same SCES have similar ages, velocities, and ejection directions. Surveying observations, we identify several SCES candidate groups with anisotropic ejection directions. The SCES is capable of producing runaway binaries: two wide dynamical binaries in infalling subclusters were tightened through ejection. This allows for another velocity kick via subsequent via a subsequent BSS ejection. An SCES-BSS ejection is a possible avenue for the creation of hypervelocity stars unbound to the Galaxy. The SCES occurs when subcluster formation is resolved. We expect nonspherical initial gas distributions to increase the number of calculated runaway stars, bringing it closer to observed values. The observation of groups of runaway stars formed via the SCES can thus reveal the assembly history of their natal clusters. 
    more » « less
  5. Atmospheric cold fronts can periodically generate storm surges and affect sediment transport in the Northern Gulf of Mexico (NGOM). In this paper, we evaluate water circulation spatiotemporal patterns induced by six atmospheric cold front events in the Wax Lake Delta (WLD) in coastal Louisiana using the 3-D hydrodynamic model ECOM-si. Model simulations show that channelized and inter-distributary water flow is significantly impacted by cold fronts. Water volume transport throughout the deltaic channel network is not just constrained to the main channels but also occurs laterally across channels accounting for about a quarter of the total flow. Results show that a significant landward flow occurs across the delta prior to the frontal passage, resulting in a positive storm surge on the coast. The along-channel current velocity dominates while cross-channel water transport occurs at the southwest lobe during the post-frontal stage. Depending on local weather conditions, the cold-front-induced flushing event lasts for 1.7 to 7 days and can flush 32–76% of the total water mass out of the system, a greater range of variability than previous reports. The magnitude of water flushed out of the system is not necessarily dependent on the duration of the frontal events. An energy partitioning analysis shows that the relative importance of subtidal energy (10–45% of the total) and tidal energy (20–70%) varies substantially from station to station and is linked to the weather impact. It is important to note that within the WLD region, the weather-induced subtidal energy (46–66% of the total) is much greater than the diurnal tidal energy (13–25% of the total). The wind associated with cold fronts in winter is the main factor controlling water circulation in the WLD and is a major driver in the spatial configuration of the channel network and delta progradation rates. 
    more » « less