Microorganisms are central to the functioning of coral reef ecosystems, but their dynamics are unstudied on most reefs. We examined the microbial ecology of shallow reefs within the Federated States of Micronesia. We surveyed 20 reefs surrounding 7 islands and atolls (Yap, Woleai, Olimarao, Kosrae, Kapingamarangi, Nukuoro, and Pohnpei), spanning 875053 km 2 . On the reefs, we found consistently higher coral coverage (mean ± SD = 36.9 ± 22.2%; max 77%) compared to macroalgae coverage (15.2 ± 15.5%; max 58%), and low abundances of fish. Reef waters had low inorganic nutrient concentrations and were dominated by Synechococcus, Prochlorococcus, and SAR11 bacteria. The richness of bacterial and archaeal communities was significantly related to interactions between island/atoll and depth. High coral coverage on reefs was linked to higher relative abundances of Flavobacteriaceae, Leisingera, Owenweeksia, Vibrio, and the OM27 clade, as well as other heterotrophic bacterial groups, consistent with communities residing in waters near corals and within coral mucus. Microbial community structure at reef depth was significantly correlated with geographic distance, suggesting that island biogeography influences reef microbial communities. Reefs at Kosrae Island, which hosted the highest coral abundance and diversity, were unique compared to other locations; seawater from Kosrae reefs had the lowest organic carbon (59.8-67.9 µM), highest organic nitrogen (4.5-5.3 µM), and harbored consistent microbial communities (>85% similar), which were dominated by heterotrophic cells. This study suggests that the reef-water microbial ecology on Micronesian reefs is influenced by the density and diversity of corals as well as other biogeographical features.
more »
« less
This content will become publicly available on December 11, 2026
Wave‐driven transport controls bacterioplankton community differentiation among coral reef habitats
Abstract The existence of highly productive coral reefs within oligotrophic gyres is in part due to intensive recycling of macronutrients and organic matter by microbes. Therefore, characterizing reef bacterioplankton communities is key for understanding reef metabolism and biogeochemical transformations. We performed a high‐resolution survey of waters surrounding Mo'orea (French Polynesia), coupling 16S metabarcoding with biogeochemical and physical measurements. Bacterioplankton communities differed markedly among reef ecosystems on three sides of the island, and within each system distinct communities emerged in forereef, backreef and reef pass habitats. The degree of habitat differentiation varied among the island sides according to current speeds inferred from wave power. Oceanic‐associated taxa were enriched in forereefs and throughout western reefs with highest wave power and lowest productivity. Reef‐associated taxa were enriched in backreef and pass habitats most strongly on northern reefs with lowest wave power and highest productivity. Our results offer insight into dynamics regulating reef microbial communities.
more »
« less
- Award ID(s):
- 2023298
- PAR ID:
- 10654225
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2378-2242
- Page Range / eLocation ID:
- e70076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Coral reefs are highly productive ecosystems with distinct biogeochemistry and biology nestled within unproductive oligotrophic gyres. Coral reef islands have often been associated with a nearshore enhancement in phytoplankton, a phenomenon known as the Island Mass Effect (IME). Despite being documented more than 60 years ago, much remains unknown about the extent and drivers of IMEs. Here we utilized 16S rRNA gene metabarcoding as a biological tracer to elucidate horizontal and vertical influence of an IME around the islands of Mo′orea and Tahiti, French Polynesia. We show that those nearshore oceanic stations with elevated chlorophyllaincluded bacterioplankton found in high abundance in the reef environment, suggesting advection of reef water is the source of altered nearshore biogeochemistry. We also observed communities in the nearshore deep chlorophyll maximum (DCM) with enhanced abundances of upper euphotic bacterioplankton that correlated with intrusions of low‐density, O2rich water, suggesting island influence extends into the DCM.more » « less
-
Meyer, Julie L (Ed.)High molecular weight (HMW; >1 kDa) carbohydrates are a major component of dissolved organic matter (DOM) released by benthic primary producers. Despite shifts from coral to algae dominance on many reefs, little is known about the effects of exuded carbohydrates on bacterioplankton communities in reef waters. We compared the monosaccharide composition of HMW carbohydrates exuded by hard corals and brown macroalgae and investigated the response of the bacterioplankton community of an algae-dominated Caribbean reef to the respective HMW fractions. HMW coral exudates were compositionally distinct from the ambient, algae-dominated reef waters and similar to coral mucus (high in arabinose). They further selected for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e.,Rhodobacteraceae,Phycisphaeraceae,Vibrionaceae, andFlavobacteriales) and significantly increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%, 44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were similar to those in algae tissue extracts and reef water (high in fucose) and did not significantly alter the composition and predicted metabolism of the bacterioplankton community. These results confirm earlier findings of coral exudates supporting efficient trophic transfer, while algae exudates may have stimulated microbial respiration instead of biomass production, thereby supporting the microbialization of reefs. In contrast to previous studies, HMW coral and not algal exudates selected for opportunistic microbes, suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e., coral vs algae)per se, may induce the rise of opportunistic microbial taxa. IMPORTANCEDissolved organic matter (DOM) released by benthic primary producers fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae dominance on many reefs, and resulting alterations in the DOM pool can promote opportunistic microbes and potential coral pathogens in reef water. To better understand these DOM-induced effects on bacterioplankton communities, we compared the carbohydrate composition of coral- and macroalgae-DOM and analyzed the response of bacterioplankton from an algae-dominated reef to these DOM types. In line with the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated microbial respiration over biomass production. Contrary to earlier findings, coral- and not algal-DOM selected for opportunistic microbial taxa, indicating that a change in the prevalent DOM composition, and not DOM type, may promote the rise of opportunistic microbes. Presented results may also apply to other coastal marine ecosystems undergoing benthic community shifts.more » « less
-
Long‐term monitoring is vital to understanding the efficacy of restoration approaches and how restoration may enhance ecosystem functions. We revisited restored oyster reefs 13 years post‐restoration and quantified the resident and transient fauna that utilize restored reefs in three differing landscape contexts: on mudflats isolated from vegetated habitat, along the edge of salt marsh, and in between seagrass and salt marsh habitat. Differences observed 1–2 years post‐restoration in reef development and associated fauna within reefs restored on mudflats versus adjacent to seagrass/salt marsh and salt marsh‐only habitats persisted more than 10 years post‐restoration. Reefs constructed on open mudflat habitats had the highest densities of oysters and resident invertebrates compared to those in other landscape contexts, although all restored reefs continued to enhance local densities of invertebrate taxa (e.g. bivalves, gastropods, decapods, polychaetes, etc.). Catch rates of juvenile fishes were enhanced on restored reefs relative to controls, but to a lesser extent than directly post‐restoration, potentially because the reefs have grown vertically within the intertidal and out of the preferred inundation regime of small juvenile fishes. Reef presence and landscape setting did not augment the catch rates of piscivorous fishes in passive gill nets, similar to initial findings; however, hook‐and‐line catch rates were greater on restored reefs than non‐reef controls. We conclude that ecosystem functions and associated services provided by restored habitats can vary both spatially and temporally; therefore, a better understanding of how service delivery varies among landscape setting and over time should enhance efforts to model these processes and restoration decision‐making.more » « less
-
Abstract Coastal systems experience frequent disturbance and multiple environmental stressors over short spatial and temporal scales. Investigating functional traits in coastal systems has the potential to inform how variation in disturbance frequency and environmental variables influence differences in trait‐based community composition and ecosystem function. Our goals were to (1) quantify trait‐based communities on two barrier islands divergent in topography and long‐term disturbance response and (2) determine relationships between community trait‐based composition and ecosystem productivity. We hypothesized that locations documented with high disturbance would have habitats with similar environmental conditions and trait‐based communities, with the opposite relationship in low‐disturbance locations. Furthermore, we expected higher productivity and lower site‐to‐site variation with low disturbance. Functional traits, biomass, and environmental metrics (soil salinity, elevation, and distance to shoreline) were collected and analyzed for two habitat types (dune and swale) on two Virginia barrier islands. Our results show that trait‐based community composition differed among habitat types and was related to disturbance. Habitats exhibited more similarity on the high‐disturbance island in both trait‐based composition and environmental variables. Conversely, the low‐disturbance island habitats were more dissimilar. We found the habitat with the lowest disturbance had the highest ecosystem productivity and had trait‐based communities indicative of highly competitive environments, while the high‐disturbance trait‐based communities were influenced by traits that indicate rapid recovery and growth. Site‐to‐site variation was similar in all dune habitats but differed among inter‐island swale habitats that varied in disturbance. These results highlight the importance of incorporating trait‐based analyses when approaching questions about community structure and ecosystem productivity in disturbance‐mediated habitats, such as coastal systems.more » « less
An official website of the United States government
