Abstract ObjectiveLeverage electronic health record (EHR) audit logs to develop a machine learning (ML) model that predicts which notes a clinician wants to review when seeing oncology patients. Materials and MethodsWe trained logistic regression models using note metadata and a Term Frequency Inverse Document Frequency (TF-IDF) text representation. We evaluated performance with precision, recall, F1, AUC, and a clinical qualitative assessment. ResultsThe metadata only model achieved an AUC 0.930 and the metadata and TF-IDF model an AUC 0.937. Qualitative assessment revealed a need for better text representation and to further customize predictions for the user. DiscussionOur model effectively surfaces the top 10 notes a clinician wants to review when seeing an oncology patient. Further studies can characterize different types of clinician users and better tailor the task for different care settings. ConclusionEHR audit logs can provide important relevance data for training ML models that assist with note-writing in the oncology setting.
more »
« less
A Comparison of House Price Classification with Structured and Unstructured Text Data
Purchasing a home is one of the largest investments most people make. House price prediction allows individuals to be informed about their asset wealth. Transparent pricing on homes allows for a more efficient market and economy. We report the performance of machine learning models trained with structured tabular representations and unstructured text descriptions. We collected a dataset of 200 descriptions of houses which include meta-information, as well as text descriptions. We test logistic regression and multi-layer perceptron (MLP) classifiers on dividing these houses into binary buckets based on fixed price thresholds. We present an exploration into strategies to represent unstructured text descriptions of houses as inputs for machine learning models. This includes a comparison of term frequency-inverse document frequency (TF-IDF), bag-of-words (BoW), and zero-shot inference with large language models. We find the best predictive performance with TF-IDF representations of house descriptions. Readers will gain an understanding of how to use machine learning models optimized with structured and unstructured text data to predict house prices.
more »
« less
- Award ID(s):
- 2021585
- PAR ID:
- 10654524
- Publisher / Repository:
- NSF PAR
- Date Published:
- Journal Name:
- The International FLAIRS Conference Proceedings
- Volume:
- 35
- ISSN:
- 2334-0762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The price of a house depends on many factors, such as its size, location, amenities, surrounding establishments, and the season in which the house is being sold, just to name a few of them. As a seller, it is absolutely essential to price the property competitively else it will not attract any buyers. This problem has given rise to multiple companies as well as past research works that try to enhance the predictability of property prices using relevant mathematical models and machine learning techniques. In this research, we investigate the usage of machine learning in predicting the house price based on related estate attributes and visual images. To this end, we collect a dataset of 2,000 houses across different cities in the United States. For each house, we annotate 14 estate attributes and five visual images for exterior, interior-living room, kitchen, bedroom, and bathroom. Following the dataset collection, different features are extracted from the input data. Furthermore, a multi-kernel regression approach is used to predict the house price from both visual cues and estate attributes. The extensive experiments demonstrate the superiority of the proposed method over the baselines.more » « less
-
A key challenge for artificial intelligence in the legal field is to determine from the text of a party’s litigation brief whether, and why, it will succeed or fail. This paper shows a proof-of-concept test case from the United States: predicting outcomes of post-grant inter partes review (IPR) proceedings for invalidating patents. The objectives are to compare decision-tree and deep learning methods, validate interpretability methods, and demonstrate outcome prediction based on party briefs. Specifically, this study compares and validates two distinct approaches: (1) representing documents with term frequency inverse document frequency (TF-IDF), training XGBoost gradient-boosted decision-tree models, and using SHAP for interpretation. (2) Deep learning of document text in context, using convolutional neural networks (CNN) with attention, and comparing LIME and attention visualization for interpretability. The methods are validated on the task of automatically determining case outcomes from unstructured written decision opinions, and then used to predict trial institution or denial based on the patent owner’s preliminary response brief. The results show how interpretable deep learning architecture classifies successful/unsuccessful response briefs on temporally separated training and test sets. More accurate prediction remains challenging, likely due to the fact-specific, technical nature of patent cases and changes in applicable law and jurisprudence over time.more » « less
-
Assessing student responses is a critical task in adaptive educational systems. More specifically, automatically evaluating students' self-explanations contributes to understanding their knowledge state which is needed for personalized instruction, the crux of adaptive educational systems. To facilitate the development of Artificial Intelligence (AI) and Machine Learning models for automated assessment of learners' self-explanations, annotated datasets are essential. In response to this need, we developed the SelfCode2.0 corpus, which consists of 3,019 pairs of student and expert explanations of Java code snippets, each annotated with semantic similarity, correctness, and completeness scores provided by experts. Alongside the dataset, we also provide performance results obtained with several baseline models based on TF-IDF and Sentence-BERT vectorial representations. This work aims to enhance the effectiveness of automated assessment tools in programming education and contribute to a better understanding and supporting student learning of programming.more » « less
-
Accurate and explainable health event predictions are becoming crucial for healthcare providers to develop care plans for patients. The availability of electronic health records (EHR) has enabled machine learning advances in providing these predictions. However, many deep-learning-based methods are not satisfactory in solving several key challenges: 1) effectively utilizing disease domain knowledge; 2) collaboratively learning representations of patients and diseases; and 3) incorporating unstructured features. To address these issues, we propose a collaborative graph learning model to explore patient-disease interactions and medical domain knowledge. Our solution is able to capture structural features of both patients and diseases. The proposed model also utilizes unstructured text data by employing an attention manipulating strategy and then integrates attentive text features into a sequential learning process. We conduct extensive experiments on two important healthcare problems to show the competitive prediction performance of the proposed method compared with various state-of-the-art models. We also confirm the effectiveness of learned representations and model interpretability by a set of ablation and case studies.more » « less
An official website of the United States government

