IODP Expedition 379 to the Amundsen Sea continental rise recovered latest Miocene-Holocene sediments from two sites on a drift in water depths >3900m. Sediments are dominated by clay and silty clay with coarser-grained intervals and ice-rafted detritus (IRD) (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021). Cobble-sized dropstones appear as fall-in, in cores recovered from sediments >5.3 Ma. We consider that abundant IRD and the sparse dropstones melted out of icebergs formed due to Antarctic ice-sheet calving events. We are using petrological and age characteristics of the clasts from the Exp379 sites to fingerprint their bedrock provenance. The results may aid in reconstruction of past changes in icesheet extent and extend knowledge of subglacial bedrock. Mapped onshore geology shows pronounced distinctions in bedrock age between tectonic provinces of West or East Antarctica (e.g. Cox et al. 2020, doi:10.21420/7SH7-6K05; Jordan et al. 2020, doi.org/10.1038/s43017-019-0013-6). This allows us to use geochronology and thermochronology of rock clasts and minerals for tracing their provenance, and ascertain whether IRD deposited at IODP379 drillsites originated from proximal or distal Antarctic sources. We here report zircon and apatite U-Pb dates from four sand samples and five dropstones taken from latest Miocene, early Pliocene, and Plio-Pleistocene-boundary sediments. Additional Hf isotope data, and apatite fission track and 40Ar/39Ar Kfeldspar ages for some of the same samples help to strengthen provenance interpretations. The study revealed three distinct zircon age populations at ca. 100, 175, and 250 Ma. Using Kolmogorov-Smirnov (K-S) statistical tests to compare our new igneous and detrital zircon (DZ) U-Pb results with previously published data, we found strong similarities to West Antarctic bedrock, but low correspondence to prospective sources in East Antarctica, implying a role for icebergs calved from the West Antarctic Ice Sheet (WAIS). The ~100 Ma age resembles plutonic ages from Marie Byrd Land and islands in Pine Island Bay. The ~250 and 175 Ma populations match published mineral dates from shelf sediments in the eastern Amundsen Sea Embayment as well as granite ages from the Antarctic Peninsula and the Ellsworth-Whitmore Mountains (EWM). The different derivation of coarse sediment sources requires changes in iceberg origin through the latest Miocene, early Pliocene, and Plio/Pleistocene, likely the result of changes in WAIS extent. One unique dropstone recovered from Exp379 Site U1533B is green quartz arenite, which yielded mostly 500-625 Ma detrital zircons. In visual appearance and dominant U-Pb age population, it resembles a sandstone dropstone recovered from Exp382 Site U1536 in the Scotia Sea (Hemming et al. 2020, https://gsa.confex.com/gsa/2020AM/meetingapp.cgi/Paper/357276). K-S tests yield high values (P ≥ 0.6), suggesting a common provenance for both dropstones recovered from late Miocene to Pliocene sediments, despite the 3270 km distance separating the sites. Comparisons to published data, in progress, narrow the group of potential on-land sources to exposures in the EWM or isolated ranges at far south latitudes in the Antarctic interior. If both dropstones originated from the same source area, they could signify dramatic shifts in the WAIS grounding line position, and the possibility of the periodic opening of a seaway connecting the Amundsen and Weddell Seas. https://meetingorganizer.copernicus.org/EGU21/EGU21-9151.html
more »
« less
Zircon U-Pb data for Amundsen Sea Embayment samples and compilation of West Antarctic and Transantarctic Mountain literature zircon U-Pb data
{"Abstract":["This dataset consists of detrital zircon U-Pb data from samples from the Amundsen Sea Embayment. The data are a product of the publication: "Reconstructing Eocene Antarctic river drainage from provenance analysis of Amundsen Sea Embayment sediments".\n\nIncluded are data from three Holocene sediment samples strategically located around the embayment to help characterise the detritus currently being eroded and deposited in the Amundsen Sea. Samples comprise of locations proximal to Pine Island Glacier and Thwaites Glacier, with a further sample to the north of Thwaites Glacier. A fourth sample consists of Cretaceous mudstone from a drill core from site PS104_20-2 in the Amundsen Sea Embayment.\n\nA second file contains a compilation of selected detrital zircon U-Pb dates from potential source areas around West Antarctica. These include the sedimentary rocks of the Swanson Formation and Ellsworth-Whitmore Mountains, as well as all published West Antarctic subglacial till data. Data from moraines in the Transantarctic Mountains are also included."]}
more »
« less
- Award ID(s):
- 1917176
- PAR ID:
- 10654902
- Publisher / Repository:
- Zenodo
- Date Published:
- Subject(s) / Keyword(s):
- Zircon U-Pb Amundsen Sea Provenance
- Format(s):
- Medium: X
- Location:
- Zenodo
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sedimentary records can illuminate relationships between the climate, topography, and glaciation of West Antarctica by revealing its Cenozoic topographic and paleoenvironmental history. Eocene fluvial drainage patterns have previously been inferred using geochemical provenance data from an ~44– to 34–million year deltaic sandstone recovered from the Amundsen Sea Embayment. One interpretation holds that a low-relief, low-lying West Antarctic landscape supported a >1500-kilometer transcontinental river system. Alternatively, higher-relief topography in central West Antarctica formed a drainage divide between the Ross and Amundsen seas. Here, zircon U-Pb data from Amundsen Sea Embayment sediments are examined alongside known regional bedrock provenance signatures. These analyses suggest that all observed provenance indicators in the Eocene sandstone derive from West Antarctic rocks. This implies that a local river system flowed off a West Antarctic drainage divide, helping constrain the mid-Late Eocene evolution of West Antarctic topography with implications for the history of rifting and the characteristics of sediments infilling interior basins.more » « less
-
Ascough, P.; Dunai, T.; King, G.; Lang, A.; Mezger, K. (Ed.)Detrital zircon geochronology by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) is a widely used tool for determining maximum depositional ages and sediment provenance, as well as reconstructing sediment routing pathways. Although the accuracy and precision of U–Pb geochronology measurements have improved over the past 2 decades, Pb loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb loss in zircon U–Pb geochronology but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that (i) CA does not systematically bias LA-ICP-MS U–Pb dates for 13 reference materials that span a wide variety of crystallization dates and U concentrations, (ii) CA-LA-ICP-MS U–Pb zircon geochronology can reduce or eliminate Pb loss in samples that have experienced significant radiation damage, and (iii) bulk CA prior to detrital zircon U–Pb geochronology by LA-ICP-MS improves the resolution of age populations defined by 206Pb/238U dates (Neoproterozoic and younger) and increases the percentage of concordant analyses in age populations defined by 207Pb/206Pb dates (Mesoproterozoic and older). The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations and increased confidence that 206Pb/238U dates are unaffected by Pb loss.more » « less
-
Abstract. The loss of radiogenic Pb from zircon is known to be a major factor that can cause inaccuracy in the U–Pb geochronological system; hence, there is a need to better characterize the distribution of Pb loss in natural samples. Treatment of zircon by chemical abrasion (CA) has become standard practice in isotope dilution–thermal ionization mass spectrometry (ID-TIMS), but CA is much less commonly employed prior to in situ analysis via laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) or secondary ionization mass spectrometry (SIMS). Differentiating the effects of low levels of Pb loss in Phanerozoic zircon with relatively low-precision in situ U–Pb dates, where the degree of Pb loss is insufficient to cause discernible discordance, is challenging. We show that U–Pb isotopic ratios that have been perturbed by Pb loss may be modeled by convolving a Gaussian distribution that represents random variations from the true isotopic value stemming from analytical uncertainty with a distribution that characterizes Pb loss. We apply this mathematical framework to model the distribution of apparent Pb loss in 10 igneous samples that have both non-CA LA-ICP-MS or SIMS U–Pb dates and an estimate of the crystallization age, either through CA U–Pb or 40Ar/39Ar geochronology. All but one sample showed negative age offsets that were unlikely to have been drawn from an unperturbed U–Pb date distribution. Modeling apparent Pb loss using the logit–normal distribution produced good fits with all 10 samples and showed two contrasting patterns in apparent Pb loss; samples where most zircon U–Pb dates undergo a bulk shift and samples where most zircon U–Pb dates exhibited a low age offset but fewer dates had more significant offset. Our modeling framework allows comparison of relative degrees of apparent Pb loss between samples of different age, with the first and second Wasserstein distances providing useful estimates of the total magnitude of apparent Pb loss. Given that the large majority of in situ U–Pb dates are acquired without the CA treatment, this study highlights a pressing need for improved characterization of apparent Pb-loss distributions in natural samples to aid in interpreting non-CA in situ U–Pb data and to guide future data collection strategies.more » « less
-
Abstract We have located 117 previously undetected seismic events mainly occurring between 2015 and 2017 that originated from glacial, tectonic, and volcanic processes in central West Antarctica using data recorded on Polar Earth Observing Network (POLENET/ANET) and UK Antarctic Network (UKANET) seismic stations. The seismic events, with local magnitudes (ML) ranging from 1.1 to 3.5, are predominantly clustered in four geographic regions; the Ellsworth Mountains, Thwaites Glacier, Pine Island Glacier, and Mount Takahe. Eighteen of the events are in the Ellsworth Mountains and can be attributed to a mixture of glacial and tectonic processes. The largest event noted in this study was a mid‐crustal (∼19 km focal depth;ML3.5) normal mechanism earthquake beneath Thwaites Glacier. We also located 91 glacial events near the grounding zones of Thwaites Glacier and Pine Island Glacier that are predominantly associated with time periods of significant calving activity. Eight events, likely arising from volcano‐tectonic processes, occurred beneath Mount Takahe. Using Pn travel times from the seismic events, we find laterally variable uppermost mantle structure in central West Antarctica. On average, the Ellsworth Mountains are underlain by a faster mantle lid (VPn = ∼8.4 km/s) compared to the Amundsen Sea Embayment region (VPn = ∼8.1 km/s). Within the Amundsen Sea Embayment itself, we find mantle lid velocities ranging from ∼8.05 to 8.18 km/s. Laterally heterogeneous uppermost mantle structure, indicative of variable thermal and rheological structure, likely influences both geothermal heat flux and glacial isostatic adjustment spatial patterns and rates within central West Antarctica.more » « less
An official website of the United States government
