Catalytic conversion of polyolefins to value-added products offers an alternative route to capture value from plastic waste. Here we initially examine reactions of a polyethylene model (hexatriacontane, C36H74) on a Pt/SiO2 catalyst under typical hydrogenolysis and hydrocracking temperatures, which leads to irreversibly adsorbed surface hydrocarbons identified after extraction of hexatriacontane with excess hot toluene. The IR spectra of these catalysts after extraction reveal only aliphatic C–H stretches. SiO2 alone leads similar hydrocarbon adsorption on the surface where extended extraction fails to fully remove the adsorbed hydrocarbons from neat silica. The amount of hydrocarbon irreversibly adsorbed increases nearly 10-fold when the reactant is changed from hexatriacontane to polyethylene (Mn = 4000 Da), but the adsorbed quantity is insensitive to reaction temperature (200–300 °C). These results demonstrate significant, nonextractable hydrocarbon deposition on catalyst support surfaces without dehydrogenation catalyst present at temperatures typical of catalytic deconstruction of polyolefin waste, which may limit catalyst turnover and impact the product distribution.
more »
« less
Hydrogenolysis of Poly(Ethylene‐co‐Vinyl Alcohol) and Related Polymer Blends over Ruthenium Heterogeneous Catalysts
Abstract The hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste – poly(ethylene‐co‐vinyl alcohol) (EVOH) and related polymer blends – into alkane products. We report that Ru/ZrO2is active for the concurrent hydrogenolysis, hydrogenation, and hydrodeoxygenation of EVOH and its thermal degradation products into alkanes (C1−C35) and water. Detailed reaction data, product analysis, and catalyst characterization reveal that the in‐situ thermal degradation of EVOH forms aromatic intermediates that are detrimental to catalytic activity. Increased hydrogen pressure promotes hydrogenation of these aromatics, preventing catalyst deactivation and improving alkane product yields. Calculated apparent rates of C−C scission reveal that the hydrogenolysis of EVOH is slower than low‐density polyethylene. We apply these findings to achieve hydrogenolysis of EVOH/polyethylene blends and elucidate the sensitivity of hydrogenolysis catalysts to such blends. Overall, we demonstrate progress towards efficient catalytic processes for the hydroconversion of waste multilayer film plastic packaging into valuable products.
more »
« less
- Award ID(s):
- 1934887
- PAR ID:
- 10655008
- Publisher / Repository:
- Willey
- Date Published:
- Journal Name:
- ChemSusChem
- Volume:
- 17
- Issue:
- 18
- ISSN:
- 1864-5631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multilayered plastics are widely used in food packaging and other commercial applications due to their tailored functional properties. By layering different polymers, the multilayered composite material can have enhanced mechanical, thermal, and barrier properties compared to a single plastic. However, there is a significant need to recycle these multilayer plastics, but their complex structure offers significant challenges to their successful recycling. Ultimately, the use and recycling of these complex materials requires the ability to characterize the composition and purity as a means of quality control for both production and recycling processes. New advances and availability of low‐field benchtop1H NMR spectrometers have led to increasing interest in its use for characterization of multicomponent polymers and polymer mixtures. Here, we demonstrate the capability of low‐field benchtop1H NMR spectroscopy for characterization of three common polymers associated with multilayered packaging systems (low‐density polyethylene [LDPE], ethylene vinyl alcohol [EVOH], and Nylon) as well as their blends. Calibration curves are obtained for determining the unknown composition of EVOH and Nylon in multilayered packaging plastics using both the EVOH hydroxyl peak area and an observed peak shift, both yielding results in good agreement with the prepared sample compositions. Additionally, comparison of results extracted for the same samples characterized by our benchtop spectrometer and a 500‐MHz spectrometer found results to be consistent and within 2 wt% on average. Overall, low‐field benchtop1H NMR spectroscopy is a reliable and accessible tool for characterization of these polymer systems.more » « less
-
Abstract We demonstrate a novel approach of utilizing methanol (CH3OH) in a dual role for (1) the methanolysis of polyethylene terephthalate (PET) to form dimethyl terephthalate (DMT) at near‐quantitative yields (~97 %) and (2) serving as an in situ H2source for the catalytic transfer hydrogenolysis (CTH) of DMT to p‐xylene (PX, ~63 % at 240 °C and 16 h) on a reducible ZnZrOxsupported Cu catalyst (i.e., Cu/ZnZrOx). Pre‐ and post‐reaction surface and bulk characterization, along with density functional theory (DFT) computations, explicate the dual role of the metal‐support interface of Cu/ZnZrOxin activating both CH3OH and DMT and facilitating a lower free‐energy pathway for both CH3OH dehydrogenation and DMT hydrogenolysis, compared to Cu supported on a redox‐neutral SiO2support. Loading studies and thermodynamic calculations showed that, under reaction conditions, CH3OH in the gas phase, rather than in the liquid phase, is critical for CTH of DMT. Interestingly, the Cu/ZnZrOxcatalyst was also effective for the methanolysis and hydrogenolysis of C−C bonds (compared to C−O bonds for PET) of waste polycarbonate (PC), largely forming xylenol (~38 %) and methyl isopropyl anisole (~42 %) demonstrating the versatility of this approach toward valorizing a wide range of condensation polymers.more » « less
-
Polymer blend compatibilization is an attractive solution for mechanical recycling of mixed plastic waste because it can result in tough blends. In this work, hydroxy-telechelic polyethylene (HOPEOH) reactive additives were used to compatibilize blends of polyethylene terephthalate (PET) and linear low-density polyethylene (LLDPE). HOPEOH additives were synthesized with molar masses of 1–20 kg/mol by ring-opening metathesis polymerization of cyclooctene followed by catalytic hydrogenation. Melt-compounded blends containing 0.5 wt % HOPEOH displayed reduced dispersed phase LLDPE particle sizes with ductilities comparable to virgin PET and almost seven times greater than neat blends, regardless of additive molar mass. In contrast, analogous blends containing monohydroxy PE additives of comparable molar masses did not result in compatibilization even at 2 wt % loading. The results strongly suggest that both hydroxy ends of HOPEOH undergo transesterification reactions during melt mixing with PET to form predominantly PET–PE–PET triblock copolymers at the interface of the dispersed and matrix phases. We hypothesize that the triblock copolymer compatibilizers localized at the interface form trapped entanglements of the PE midblocks with nearby LLDPE homopolymer chains by a hook-and-clasp mechanism. Finally, HOPEOH compounds were able to efficiently compatibilize blends derived solely from postconsumer PET and PE bottles and film, suggesting their industrial applicability.more » « less
-
ABSTRACT Multilayer packaging is commonly used in the food industry to improve product preservation by combining materials with specific properties for optimal protection. Ethylene vinyl alcohol (EVOH) is highly valued for its barrier properties against air and moisture. The mechanical properties of EVOH films are influenced by both the ethylene content, which affects crystallinity and barrier performance, and the thickness of the EVOH layer, which affects the film's mechanical strength. This study develops mathematical models to explore the relationship between EVOH film thickness, ethylene content, and mechanical properties, such as tensile strength, elongation at break, and elastic modulus. Using RSM with I‐optimal design, the optimal conditions for EVOH films are identified at a thickness of 0.03 mm and 48 mol% ethylene content. The model predicts values of 25.178% for elongation at break, 3077.865 MPa for elastic modulus, and 97.444 MPa for tensile strength. These predictions are validated through ANOVA, confirming the statistical significance of the model. Experimental results show achieved values of 27.119% for elongation, 3437.811 MPa for elastic modulus, and 107.308 MPa for tensile strength, demonstrating model accuracy. To further validate these findings, EVOH films are characterized by SEM, FTIR spectroscopy, and TGA, providing valuable insights into the structural and functional properties for food packaging.more » « less
An official website of the United States government

