Abstract Gravitational waves (GWs) from merging compact objects encode direct information about the luminosity distance to the binary. When paired with a redshift measurement, this enables standard-siren cosmology: a Hubble diagram can be constructed to directly probe the Universe’s expansion. This can be done in the absence of electromagnetic measurements, as features in the mass distribution of GW sources provide self-calibrating redshift measurements without the need for a definite or probabilistic host galaxy association. This “spectral siren” technique has thus far only been applied with simple parametric representations of the mass distribution, and theoretical predictions for features in the mass distribution are commonly presumed to be fundamental to the measurement. However, the use of an inaccurate representation leads to biases in the cosmological inference, an acute problem given the current uncertainties in true source population. Furthermore, it is commonly presumed that the form of the mass distribution must be known a priori to obtain unbiased measurements of cosmological parameters in this fashion. Here, we demonstrate that spectral sirens can accurately infer cosmological parameters without such prior assumptions. We apply a flexible, nonparametric model for the mass distribution of compact binaries to a simulated catalog of 1000 GW signals, consistent with expectations for the next LIGO–Virgo–KAGRA observing run. We find that, despite our model’s flexibility, both the source mass model and cosmological parameters are correctly reconstructed. We predict a 11.2%✎measurement ofH0, keeping all other cosmological parameters fixed, and a 6.4%✎measurement ofH(z= 0.9)✎when fitting for multiple cosmological parameters (1σuncertainties). This astrophysically agnostic spectral siren technique will be essential to arrive at precise and unbiased cosmological constraints from GW source populations.
more »
« less
This content will become publicly available on February 1, 2026
A precise fitting formula for gravitational wave spectra from the sound shell model
Abstract Obtaining a precise form for the predicted gravitational wave (GW) spectrum from a phase transition is a topic of great relevance for beyond Standard Model (BSM) physicists. Currently, the most sophisticated semi-analytic framework for estimating the dominant contribution to the spectrum is the sound shell model; however, full calculations within this framework can be computationally expensive, especially for large-scale scans. The community therefore generally manages with fit functions to the GW spectrum, the most widely used of which is a single broken power law. We provide a more precise fit function based on the sound shell model: our fit function features a double broken power law with two frequency breaks corresponding to the two characteristic length scales of the problem — inter-bubble spacing and thickness of sound shells, the second of which is neglected in the single broken power law fit. Compared to previously proposed fits, we demonstrate that our fit function more faithfully captures the GW spectrum coming from a full calculation of the sound shell model, over most of the space of the thermodynamic parameters governing the phase transition. The physical origins of the fit parameters and their dependence on the thermodynamic parameters are studied in the underlying sound shell model: in particular, we perform a series of detailed scans for these quantities over the plane of thestrength of the phase transition (α) and the bubble wall velocity (vw). Wherever possible, we comment on the physical interpretations of these scans. From a user-end perspective, we provide data files and scripts inPythonandMathematicathat can be directly utilized by a front-end user to generate accurate GW spectra with our fit function, given initial inputs ofα,vw,β/H(nucleation rate parameter) andTn(nucleation temperature) for the relevant BSM scenario.https://github.com/SFH2024/precise-fit-fopt-gw.
more »
« less
- Award ID(s):
- 2412671
- PAR ID:
- 10655073
- Publisher / Repository:
- JCAP
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2025
- Issue:
- 02
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces theH0tension but does not provide any meaningful improvement of theS8tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model,H0can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version ofCLASSthat has been modified to analyze this model is publicly available athttps://github.com/ManuelBuenAbad/class_spartacous.more » « less
-
Abstract The Hubble diagram of quasars, as candidates to “standardizable” candles, has been used to measure the expansion history of the Universe at late times, up to very high redshifts (z∼ 7). It has been shown that this history, as inferred from the quasar dataset, deviates at ≳ 3σlevel from the concordance (ΛCDM) cosmology model preferred by the cosmic microwave background (CMB) and other datasets. In this article, we investigate whether new physics beyond ΛCDM (BΛCDM) or beyond the Standard Model (BSM) could make the quasar data consistent with the concordance model. We first show that an effective redshift-dependent relation between the quasar UV and X-ray luminosities, complementing previous phenomenological work in the literature, can potentially remedy the discrepancy. Such a redshift dependence can be realized in a BSM model with axion-photon conversion in the intergalactic medium (IGM), although the preferred parameter space is in tension with various other astrophysical constraints on axions, at a level depending on the specific assumptions made regarding the IGM magnetic field. We briefly discuss a variation of the axion model that could evade these astrophysical constraints. On the other hand, we show that models beyond ΛCDM such as one with a varying dark energy equation of state (wCDM) or the phenomenological cosmographic model with a polynomial expansion of the luminosity distance, cannot alleviate the tension. The code for our analysis, based onemcee[1] andcorner.py[2], is publicly available atgithub.com/ChenSun-Phys/high_z_candles.more » « less
-
Abstract Precise and accurate predictions of the halo mass function for cluster mass scales inwνCDM cosmologies are crucial for extracting robust and unbiased cosmological information from upcoming galaxy cluster surveys.Here, we present a halo mass function emulator for cluster mass scales (≳ 1013M⊙/h) up to redshiftz= 2 with comprehensive support for the parameter space ofwνCDM cosmologies allowed by current data.Based on theAemulusνsuite of simulations, the emulator marks a significant improvement in the precision of halo mass function predictions by incorporating both massive neutrinos and non-standard dark energy equation of state models.This allows for accurate modeling of the cosmology dependence in large-scale structure and galaxy cluster studies.We show that the emulator, designed using Gaussian Process Regression, has negligible theoretical uncertainties compared to dominant sources of error in future cluster abundance studies.Our emulator is publicly available (https://github.com/DelonShen/aemulusnu_hmf), providing the community with a crucial tool for upcoming cosmological surveys such as LSST and Euclid.more » « less
-
Abstract While space-borne optical and near-infrared facilities have succeeded in delivering a precise and spatially resolved picture of our Universe, their small survey area is known to underrepresent the true diversity of galaxy populations. Ground-based surveys have reached comparable depths but at lower spatial resolution, resulting in source confusion that hampers accurate photometry extractions. What once was limited to the infrared regime has now begun to challenge ground-based ultradeep surveys, affecting detection and photometry alike. Failing to address these challenges will mean forfeiting a representative view into the distant Universe. We introduceThe Farmer: an automated, reproducible profile-fitting photometry package that pairs a library of smooth parametric models fromThe Tractorwith a decision tree that determines the best-fit model in concert with neighboring sources. Photometry is measured by fitting the models on other bands leaving brightness free to vary. The resulting photometric measurements are naturally total, and no aperture corrections are required. Supporting diagnostics (e.g.,χ2) enable measurement validation. As fitting models is relatively time intensive,The Farmeris built with high-performance computing routines. We benchmarkThe Farmeron a set of realistic COSMOS-like images and find accurate photometry, number counts, and galaxy shapes.The Farmeris already being utilized to produce catalogs for several large-area deep extragalactic surveys where it has been shown to tackle some of the most challenging optical and near-infrared data available, with the promise of extending to other ultradeep surveys expected in the near future.The Farmeris available to download from GitHub (https://github.com/astroweaver/the_farmer) and Zenodo (https://doi.org/10.5281/zenodo.8205817).more » « less
An official website of the United States government
