skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The sensitivity of reconstructed carbon dioxide concentrations to stomatal preparation methods using a leaf gas exchange model
Abstract PremiseMechanistic models using stomatal traits and leaf carbon isotope ratios to reconstruct atmospheric carbon dioxide (CO2) concentrations (ca) are important to understand the Phanerozoic paleoclimate. However, methods for preparing leaf cuticles to measure stomatal traits have not been standardized. MethodsThree people measured the stomatal density and index, guard cell length, guard cell pair width, and pore length of leaves from the sameGinkgo biloba,Quercus alba, andZingiber miogaleaves growing at known CO2levels using four preparation methods: fluorescence on cleared leaves, nail polish, dental putty on fresh leaves, and dental putty on dried leaves. ResultsThere are significant differences between trait measurements from each method. Modeledcacalculations are less sensitive to method than individual traits; however, the choice of assumed carbon isotope fractionation also impacted the accuracy of the results. DiscussionWe show that there is not a significant difference betweencaestimates made using any of the four methods. Further study is needed on the fractionation due to carboxylation of ribulose bisphosphate (RuBP) in individual plant species before use as a paleo‐CO2barometer and to refine estimates based upon widely applied taxa (e.g.,Ginkgo). Finally, we recommend that morphological measurements be made by multiple observers to reduce the effect of individual observational biases.  more » « less
Award ID(s):
1949151
PAR ID:
10655157
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Applications in Plant Sciences
Volume:
13
Issue:
1
ISSN:
2168-0450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseThe adaptive significance of amphistomy (stomata on both upper and lower leaf surfaces) is unresolved. A widespread association between amphistomy and open, sunny habitats suggests the adaptive benefit of amphistomy may be greatest in these contexts, but this hypothesis has not been tested experimentally. Understanding amphistomy informs its potential as a target for crop improvement and paleoenvironment reconstruction. MethodsWe developed a method to quantify “amphistomy advantage” () as the log‐ratio of photosynthesis in an amphistomatous leaf to that of the same leaf but with gas exchange blocked through the upper surface (pseudohypostomy). Humidity modulated stomatal conductance and thus enabled comparing photosynthesis at the same total stomatal conductance. We estimated and leaf traits in six coastal (open, sunny) and six montane (closed, shaded) populations of the indigenous Hawaiian species ʻilima (Sida fallax). ResultsCoastal ʻilima leaves benefit 4.04 times more from amphistomy than montane leaves. Evidence was equivocal with respect to two hypotheses: (1) that coastal leaves benefit more because they are thicker and have lower CO2conductance through the internal airspace and (2) that they benefit more because they have similar conductance on each surface, as opposed to most conductance being through the lower surface. ConclusionsThis is the first direct experimental evidence that amphistomy increases photosynthesis, consistent with the hypothesis that parallel pathways through upper and lower mesophyll increase CO2supply to chloroplasts. The prevalence of amphistomatous leaves in open, sunny habitats can partially be explained by the increased benefit of amphistomy in “sun” leaves, but the mechanistic basis remains uncertain. 
    more » « less
  2. Summary Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied.We developed an approach for clamping leaf‐to‐air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming‐induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature‐sensitive proteins, Phytochrome B (phyB) and EARLY‐FLOWERING‐3 (ELF3).We confirmed thatphot1‐5/phot2‐1leaves lacking blue‐light photoreceptors showed partially reduced warming‐induced stomatal opening. Furthermore, ABA‐biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly,Arabidopsis(dicot) andBrachypodium distachyon(monocot) mutants lacking guard cell CO2sensors and signaling mechanisms, includinght1,mpk12/mpk4‐gc, andcbc1/cbc2abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis.We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2assimilation and stomatal CO2sensing. Additionally, increasing heat stress functions via a distinct photosynthesis‐uncoupled stomatal opening pathway. 
    more » « less
  3. Abstract Tropical forest canopies cycle vast amounts of carbon, yet we still have a limited understanding of how these critical ecosystems will respond to climate warming. We implemented in situ leaf‐level + 3°C experimental warming from the understory to the upper canopy of two Puerto Rican tropical tree species,Guarea guidoniaandOcotea sintenisii. After approximately 1 month of continuous warming, we assessed adjustments in photosynthesis, chlorophyll fluorescence, stomatal conductance, leaf traits and foliar respiration. Warming did not alter net photosynthetic temperature response for either species; however, the optimum temperature ofOcoteaunderstory leaf photosynthetic electron transport shifted upward. There was noOcotearespiratory treatment effect, whileGuarearespiratory temperature sensitivity (Q10) was down‐regulated in heated leaves. The optimum temperatures for photosynthesis (Topt) decreased 3–5°C from understory to the highest canopy position, perhaps due to upper canopy stomatal conductance limitations.Guareaupper canopyToptwas similar to the mean daytime temperatures, whileOcoteacanopy leaves often operated aboveTopt. With minimal acclimation to warmer temperatures in the upper canopy, further warming could put these forests at risk of reduced CO2uptake, which could weaken the overall carbon sink strength of this tropical forest. 
    more » « less
  4. Abstract PremiseThe Aptian–Albian (121.4–100.5 Ma) was a greenhouse period with global temperatures estimated as 10–15°C warmer than pre‐industrial conditions, so it is surprising that the most reliable CO2estimates from this time are <1400 ppm. This low CO2during a warm period implies a very high Earth‐system sensitivity in the range of 6 to 9°C per CO2doubling between the Aptian‐Albian and today. MethodsWe applied a well‐vetted paleo‐CO2proxy based on leaf gas‐exchange principles (Franks model) to twoPseudotorelliaspecies from three stratigraphically similar samples at the Tevshiin Govi lignite mine in central Mongolia (~119.7–100.5 Ma). ResultsOur median estimated CO2concentration from the three respective samples was 2132, 2405, and 2770 ppm. The primary reason for the high estimated CO2but with relatively large uncertainties is the very low stomatal density in both species, where small variations propagate to large changes in estimated CO2. Indeed, we found that at least 15 leaves are required before the aggregate estimated CO2approaches that of the full data set. ConclusionsOur three CO2estimates all exceeded 2000 ppm, translating to an Earth‐system sensitivity (~3–5°C/CO2doubling) that is more in keeping with the current understanding of the long‐term climate system. Because of our large sample size, the directly measured inputs did not contribute much to the overall uncertainty in estimated CO2; instead, the inferred inputs were responsible for most of the overall uncertainty and thus should be scrutinized for their value choices. 
    more » « less
  5. PREMISEBiological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed,Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2and nitrogen pollution enhance its growth and facilitate invasion becauseP. australisresponds more strongly to these enrichments than do native species. We investigated how modifications to stomatal features contribute to strong photosynthetic responses to CO2and nitrogen enrichment inP. australisby evaluating stomatal shifts under experimental conditions and relating them to maximal stomatal conductance (gwmax) and photosynthetic rates. METHODSPlants were grownin situin open‐top chambers under ambient and elevated atmospheric CO2(eCO2) and porewater nitrogen (Nenr) in a Chesapeake Bay tidal marsh. We measured light‐saturated carbon assimilation rates (Asat) and stomatal characteristics, from which we calculatedgwmaxand determined whether CO2and Nenraltered the relationship betweengwmaxandAsat. RESULTSeCO2and Nenrenhanced bothgwmaxandAsat, but to differing degrees;gwmaxwas more strongly influenced by Nenrthrough increases in stomatal density whileAsatwas more strongly stimulated by eCO2. There was a positive relationship betweengwmaxandAsatthat was not modified by eCO2or Nenr, individually or in combination. CONCLUSIONSChanges in stomatal features co‐occur with previously described responses ofP. australisto eCO2and Nenr. Complementary responses of stomatal length and density to these global change factors may facilitate greater stomatal conductance and carbon gain, contributing to the invasiveness of the introduced lineage. 
    more » « less