Benthic foraminifera are used to generate the majority of paleo-proxy records reconstructing past ocean changes including variations in the strength of AMOC. To assess the reliability of geochemical proxy records generated using benthic foraminifera, a Foraminifera Preservation Index (FPI) was developed to quantify assemblage-wide changes in visual preservation quality. The qualitative criteria for preservation included in the FPI are supported by stable isotope and trace element datasets. Early application of the FPI on Cibicidoidesassemblages from the deep Pacific Ocean (IODP Sites 846, 1143, 1208) reveal quantifiably better preservation during glacial periods relative to interglacial periods for the last ~1 million years. Here, we present results from two summer REU projects tracking such preservation changes in the deep North and South Atlantic Ocean prior to and throughout the last deglaciation (~0-35 ka). Changes in Cibicidoides FPI from IODP Site 1089 in the deep South Atlantic (~4600m water depth: primarily bathed by Antarctic Bottom Water - AABW) mirror those in the Pacific with better preservation during the glacial maximum of Marine Isotope Stage (MIS 2) than the Holocene interglacial (MIS 1). Alternatively, Cibicidoides FPI from IODP Site 1059 (~3000m water depth: bathed by North Atlantic Deep Water [NADW] during interglacials; and by AABW during glacials) reveal better preservation during the Holocene relative to MIS 2. Despite these opposing trends, changes in FPI occur at both sites at ~15 ka corresponding to major changes to AMOC documented throughout the deep Atlantic basin. These findings imply that the same processes involved in water mass CO2-carbonate chemistry on glacial-interglacial timescales affect preservation of benthic foraminifera. Furthermore, our results suggest that the FPI can track major changes in deglacial AMOC, potentially providing an inexpensive method to produce preliminary data prior to or in unison with more expensive geochemical analyses.
more »
« less
This content will become publicly available on June 23, 2026
Is There Robust Evidence for Freshwater-Driven AMOC Changes? A Synthesis of Data, Models, and Mechanisms
The Atlantic Meridional Overturning Circulation (AMOC) transports heat to high latitudes and carbon to the deep ocean. Paleoceanographic observations have led to the widely held view that the strength of the AMOC was significantly reduced at two intervals during the most recent glacial-to-interglacial transition, with global climate impacts. Climate models predict that the AMOC may decline in the future due to anthropogenic forcing, but the time periods for modern observations are too short to detect recent trends with high confidence. To understand the likelihood of future changes in the AMOC, it is important to understand the mechanisms that drove past changes in AMOC strength. In this paper we review (1) the paleoceanographic proxy data that have led to the widespread view that the AMOC sharply decreased for periods of several thousand years during the last deglaciation, (2) climate model simulations of the last deglaciation, with particular attention to their use of fresh water to alter the AMOC, (3) the physical mechanisms that could have driven past changes in the AMOC, and (4) how insights from past ocean change can inform our understanding of what may happen in the future.
more »
« less
- Award ID(s):
- 2123128
- PAR ID:
- 10655204
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- Volume:
- 38
- Issue:
- 3
- ISSN:
- 2377-617X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Deglaciations and glacial inceptions are the two equally important transitional periods that bridge the glacial and interglacial climate states, yet our understanding of deglaciations far exceeds that of glacial inceptions. Substantial variations in deep ocean circulation accompanied the last deglaciation, and model simulations recently suggested that a weakening of the Atlantic Meridional Overturning Circulation (AMOC) also occurred at the last glacial inception (LGI; 113-119 thousand years ago), yet evidence of such a change remains inconclusive. Here, we report three Pa/Th records from the western and central North Atlantic that display an abrupt weakening of the AMOC at the LGI. The magnitude of the reconstructed AMOC weakening approaches but never reaches the level of disruptions associated with the Heinrich ice discharge events. Our results may highlight a unique period of orbitally forced abrupt circulation changes and the importance of ocean processes in setting atmospheric CO2changes in motion.more » « less
-
A widespread theory in paleoclimatology suggests that changes in freshwater discharge to the Nordic (Greenland, Norwegian, and Icelandic) Seas from ice sheets and proglacial lakes over North America played a role in triggering episodes of abrupt climate change during deglaciation (21–8 ka) by slowing the strength of the Atlantic Meridional Overturning circulation (AMOC). Yet, proving this link has been problematic, as climate models are unable to produce centennial-to-millennial–length reductions in overturning from short-lived outburst floods, while periods of iceberg discharge during Heinrich Event 1 (ca. 16 ka) may have occurred after the climate had already begun to cool. Here, results from a series of numerical model experiments are presented to show that prior to deglaciation, sea ice could have become tens of meters thick over large parts of the Arctic Basin, forming an enormous reservoir of freshwater independent from terrestrial sources. Our model then shows that deglacial sea-level rise, changes in atmospheric circulation, and terrestrial outburst floods caused this ice to be exported through Fram Strait, where its subsequent melt freshened the Nordic Seas enough to weaken the AMOC. Given that both the volume of ice stored in the Arctic Basin and the magnitude of the simulated export events exceed estimates of the volumes and fluxes of meltwater periodically discharged from proglacial Lake Agassiz, our results show that non-terrestrial freshwater sources played an important role in causing past abrupt climate change.more » « less
-
null (Ed.)International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 my. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as control mechanisms on the basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the sensitivity of the Agulhas Current to climatic changes during the Pliocene–Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that span from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal.more » « less
-
International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal.more » « less
An official website of the United States government
