Abstract Cancers exhibit functional and structural diversity in distinct patients. In this mass, normal and malignant cells create tumor microenvironment that is heterogeneous among patients. A residue from primary tumors leaks into the bloodstream as cell clusters and single cells, providing clues about disease progression and therapeutic response. The complexity of these hierarchical microenvironments needs to be elucidated. Although tumors comprise ample cell types, the standard clinical technique is still the histology that is limited to a single marker. Multiplexed imaging technologies open new directions in pathology. Spatially resolved proteomic, genomic, and metabolic profiles of human cancers are now possible at the single-cell level. This perspective discusses spatial bioimaging methods to decipher the cascade of microenvironments in solid and liquid biopsies. A unique synthesis of top-down and bottom-up analysis methods is presented. Spatial multi-omics profiles can be tailored to precision oncology through artificial intelligence. Data-driven patient profiling enables personalized medicine and beyond.
more »
« less
This content will become publicly available on October 15, 2026
The shared selection landscape of dog and human cancers
Cancers in pet dogs are prevalent, progress rapidly, and closely resemble human cancers, positioning them as powerful models for precision oncology. While genetic drivers of human cancer often transcend histologic boundaries, most comparative studies have focused on matched cancer types, leaving the broader scope of genomic similarity unresolved. We performed the first exome-wide, histology-agnostic comparison of canine and human cancers, analyzing 429 dog and 14,966 human tumors across 39 types. Mutational signatures and genes under selection are widely shared between species, and cancer types are as genomically similar between species as within species, with no greater similarity within dog breeds than between breeds. Machine-learning models identify genetic features shared by dog and human tumors of different histologies, mirroring cross-histology patterns in human cancer. These findings establish dog cancer as a powerful system for genomics-informed precision oncology and support pan cancer approaches to discover translationally relevant models beyond histologic classification.
more »
« less
- Award ID(s):
- 2022007
- PAR ID:
- 10655325
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. Results We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. Conclusions Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.more » « less
-
Abstract Objective We develop natural language processing (NLP) methods capable of accurately classifying tumor attributes from pathology reports given minimal labeled examples. Our hierarchical cancer to cancer transfer (HCTC) and zero-shot string similarity (ZSS) methods are designed to exploit shared information between cancers and auxiliary class features, respectively, to boost performance using enriched annotations which give both location-based information and document level labels for each pathology report. Materials and Methods Our data consists of 250 pathology reports each for kidney, colon, and lung cancer from 2002 to 2019 from a single institution (UCSF). For each report, we classified 5 attributes: procedure, tumor location, histology, grade, and presence of lymphovascular invasion. We develop novel NLP techniques involving transfer learning and string similarity trained on enriched annotations. We compare HCTC and ZSS methods to the state-of-the-art including conventional machine learning methods as well as deep learning methods. Results For our HCTC method, we see an improvement of up to 0.1 micro-F1 score and 0.04 macro-F1 averaged across cancer and applicable attributes. For our ZSS method, we see an improvement of up to 0.26 micro-F1 and 0.23 macro-F1 averaged across cancer and applicable attributes. These comparisons are made after adjusting training data sizes to correct for the 20% increase in annotation time for enriched annotations compared to ordinary annotations. Conclusions Methods based on transfer learning across cancers and augmenting information methods with string similarity priors can significantly reduce the amount of labeled data needed for accurate information extraction from pathology reports.more » « less
-
Identifying functionally important cell states and structure within heterogeneous tumors remains a significant biological and computational challenge. Current clustering or trajectory-based models are ill-equipped to address the notion that cancer cells reside along a phenotypic continuum. We present Archetypal Analysis network (AAnet), a neural network that learns archetypal states within a phenotypic continuum in single-cell data. Unlike traditional archetypal analysis, AAnet learns archetypes in simplex-shaped neural network latent space. Using pre-clinical models and clinical breast cancers, AAnet resolves distinct cell states and processes, including cell proliferation, hypoxia, metabolism and immune interactions. Primary tumor archetypes are recapitulated in matched liver, lung and lymph node metastases. Spatial transcriptomics reveal archetypal organization within the tumor, and, intra-archetypal mirroring between cancer and adjacent stromal cells. AAnet identifies GLUT3 within the hypoxic archetype that proves critical for tumor growth and metastasis. AAnet is a powerful tool, capturing complex, functional cell states from multimodal data.more » « less
-
High intratumoral heterogeneity is thought to be a poor prognostic indicator. However, the source of heterogeneity may also be important, as genomic heterogeneity is not always reflected in histologic or ‘visual’ heterogeneity. We aimed to develop a predictor of histologic heterogeneity and evaluate its association with outcomes and molecular heterogeneity. We used VGG16 to train an image classifier to identify unique, patient-specific visual features in 1655 breast tumors (5907 core images) from the Carolina Breast Cancer Study (CBCS). Extracted features for images, as well as the epithelial and stromal image components, were hierarchically clustered, and visual heterogeneity was defined as a greater distance between images from the same patient. We assessed the association between visual heterogeneity, clinical features, and DNA-based molecular heterogeneity using generalized linear models, and we used Cox models to estimate the association between visual heterogeneity and tumor recurrence. Basal-like and ER-negative tumors were more likely to have low visual heterogeneity, as were the tumors from younger and Black women. Less heterogeneous tumors had a higher risk of recurrence (hazard ratio = 1.62, 95% confidence interval = 1.22–2.16), and were more likely to come from patients whose tumors were comprised of only one subclone or had a TP53 mutation. Associations were similar regardless of whether the image was based on stroma, epithelium, or both. Histologic heterogeneity adds complementary information to commonly used molecular indicators, with low heterogeneity predicting worse outcomes. Future work integrating multiple sources of heterogeneity may provide a more comprehensive understanding of tumor progression.more » « less
An official website of the United States government
