skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Extending a pretrained language model (BERT) using an ontological perspective to classify students’ scientific expertise level from written responses
The complex and interdisciplinary nature of scientific concepts presents formidable challenges for students in developing their knowledge-in-use skills. The utilization of computerized analysis for evaluating students’ contextualized constructed responses offers a potential avenue for educators to develop personalized and scalable interventions, thus supporting the current teaching and learning of science. While prior research in artificial intelligence has demonstrated the effectiveness of algorithms, including Bidirectional Encoder Representations from Transformers (BERT), in tasks like automated classifications of constructed responses, these efforts have predominantly leaned towards text-level features, often overlooking the exploration of conceptual ideas embedded in students’ responses from a cognitive perspective. Despite BERT’s performance in downstream tasks, challenges may arise in domain-specific tasks, particularly in establishing knowledge connections between specialized and open domains. These challenges become pronounced in small-scale and imbalanced educational datasets, where the available information for fine-tuning is frequently inadequate to capture task-specific nuances and contextual details. The primary objective of the present study is to investigate the effectiveness of a pretrained language model, when integrated with an ontological framework aligned with a contextualized science assessment, in classifying students’ expertise levels in scientific explanation. Our findings indicate that while pretrained language models, such as BERT, contribute to enhanced performance in language-related tasks within educational contexts, the incorporation of identifying domain-specific terms and extracting and substituting with their associated sibling terms in sentences through ontology-based systems can significantly improve classification model performance. Further, we qualitatively examined student responses and found that, as expected, the ontology framework identified and substituted key domain-specific terms in student responses that led to more accurate predictive scores. The study explores the practical implementation of ontology in assessment evaluation to facilitate formative assessment and formulate instructional strategies.  more » « less
Award ID(s):
2013359
PAR ID:
10655442
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Disciplinary and Interdisciplinary Science Education Research
Volume:
7
Issue:
1
ISSN:
2662-2300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge restrict their understanding in task-specific requirements and hinder their ability to achieve satisfactory performance. Retrieval-augmented generation (RAG) emerges as a promising solution by enabling LLMs to access relevant domain-specific knowledge during assessment. In this work, we propose an adaptive RAG framework for automated grading that dynamically retrieves and incorporates domain-specific knowledge based on the question and student answer context. Our approach combines semantic search and curated educational sources to retrieve valuable reference materials. Experimental results in a science education dataset demonstrate that our system achieves an improvement in grading accuracy compared to baseline LLM approaches. The findings suggest that RAG-enhanced grading systems can serve as reliable support with efficient performance gains. 
    more » « less
  2. Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics. 
    more » « less
  3. Assessing student responses is a critical task in adaptive educational systems. More specifically, automatically evaluating students' self-explanations contributes to understanding their knowledge state which is needed for personalized instruction, the crux of adaptive educational systems. To facilitate the development of Artificial Intelligence (AI) and Machine Learning models for automated assessment of learners' self-explanations, annotated datasets are essential. In response to this need, we developed the SelfCode2.0 corpus, which consists of 3,019 pairs of student and expert explanations of Java code snippets, each annotated with semantic similarity, correctness, and completeness scores provided by experts. Alongside the dataset, we also provide performance results obtained with several baseline models based on TF-IDF and Sentence-BERT vectorial representations. This work aims to enhance the effectiveness of automated assessment tools in programming education and contribute to a better understanding and supporting student learning of programming. 
    more » « less
  4. Abstract Clinical notes present a wealth of information for applications in the clinical domain, but heterogeneity across clinical institutions and settings presents challenges for their processing. The clinical natural language processing field has made strides in overcoming domain heterogeneity, while pretrained deep learning models present opportunities to transfer knowledge from one task to another. Pretrained models have performed well when transferred to new tasks; however, it is not well understood if these models generalize across differences in institutions and settings within the clinical domain. We explore if institution or setting specific pretraining is necessary for pretrained models to perform well when transferred to new tasks. We find no significant performance difference between models pretrained across institutions and settings, indicating that clinically pretrained models transfer well across such boundaries. Given a clinically pretrained model, clinical natural language processing researchers may forgo the time-consuming pretraining step without a significant performance drop. 
    more » « less
  5. Large Language Models (LLMs) are pre-trained on large-scale corpora and excel in numerous general natural language processing (NLP) tasks, such as question answering (QA). Despite their advanced language capabilities, when it comes to domain-specific and knowledge-intensive tasks, LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions. Additionally, fine tuning LLMs' intrinsic knowledge to highly specific domains is an expensive and time consuming process. The retrieval-augmented generation (RAG) process has recently emerged as a method capable of optimization of LLM responses, by referencing them to a predetermined ontology. It was shown that using a Knowledge Graph (KG) ontology for RAG improves the QA accuracy, by taking into account relevant sub-graphs that preserve the information in a structured manner. In this paper, we introduce SMART-SLIC, a highly domain-specific LLM framework, that integrates RAG with KG and a vector store (VS) that store factual domain specific information. Importantly, to avoid hallucinations in the KG, we build these highly domain-specific KGs and VSs without the use of LLMs, but via NLP, data mining, and nonnegative tensor factorization with automatic model selection. Pairing our RAG with a domain-specific: (i) KG (containing structured information), and (ii) VS (containing unstructured information) enables the development of domain-specific chat-bots that attribute the source of information, mitigate hallucinations, lessen the need for fine-tuning, and excel in highly domain-specific question answering tasks. We pair SMART-SLIC with chain-of-thought prompting agents. The framework is designed to be generalizable to adapt to any specific or specialized domain. In this paper, we demonstrate the question answering capabilities of our framework on a corpus of scientific publications on malware analysis and anomaly detection. 
    more » « less