Abstract Microalgae biofilms have been demonstrated to recover nutrients from wastewater and serve as biomass feedstock for bioproducts. However, there is a need to develop a platform to quantitatively describe microalgae biofilm production, which can provide guidance and insights for improving biomass areal productivity and nutrient uptake efficiency. This paper proposes a unified experimental and theoretical framework to investigate algae biofilm growth on a rotating algae biofilm reactor (RABR). Experimental laboratory setups are used to conduct controlled experiments on testing environmental and operational factors for RABRs. We propose a differential–integral equation‐based mathematical model for microalgae biofilm cultivation guided by laboratory experimental findings. The predictive mathematical model development is coordinated with laboratory experiments of biofilm areal productivity associated with ammonia and inorganic phosphorus uptake by RABRs. The unified experimental and theoretical tool is used to investigate the effects of RABR rotating velocity, duty cycle (DC), and light intensity on algae biofilm growth, areal productivity, nutrient uptake efficiency, and energy efficiency in wastewater treatment. Our framework indicates that maintaining a reasonable light intensity range improves biomass areal productivity and nutrient uptake efficiency. Our framework also indicates that faster RABR rotation benefits biomass areal productivity. However, maximizing the nutrient uptake efficiency requires a reasonably low RABR rotating speed. Energy efficiency is strongly correlated with RABR rotating speed and DC.
more »
« less
This content will become publicly available on November 1, 2026
Engineering Approaches for Sustainable Protein Production in Microalgae: A Comprehensive Review
ABSTRACT The continuously growing demand for dietary protein raises the urgency of expanding supply chains beyond conventional animal‐based sources. Microalgae are well‐known as biofactories due to their high photosynthetic efficiency, rapid growth, minimal resource requirements, and ability to thrive in diverse environments. To maximize protein production, mixotrophic cultivation is often preferred, as it enables significantly higher biomass yields. Key factors, including light quality (intensity and wavelength), carbon sources (inorganic CO2and organic substrates), and nitrogen availability, play significant roles in directing metabolic fluxes toward protein biosynthesis, the modulation of which refers to biochemical engineering. In the field of genetic engineering, precise gene editing tools, especially CRISPR/Cas9, have demonstrated considerable promise, although the application in enhancing microalgal protein production remains challenging and limited. By contrast, random mutagenesis has been proven effective in improving multiple strains for increased protein accumulation. Beyond upstream strategies, downstream engineering, including drying, extrusion forming, and fermentation, is emphasized for improving the nutritional and functional properties of microalgal proteins for food and feed applications in the form of whole cells. Furthermore, extracted microalgal proteins broaden the range of potential applications, whose quality is significantly affected by the methods used for cell disruption/extraction, purification, and hydrolysis. Novel biorefinery strategies are also discussed to enhance economic viability by integrating value‐added biomass utilization within a protein‐first recovery scheme. Altogether, by combining advances in cultivation technologies, strain modification, processing, and supportive policy frameworks, this review supports the development of sustainable protein production platforms based on microalgae.
more »
« less
- Award ID(s):
- 2328159
- PAR ID:
- 10655766
- Publisher / Repository:
- Comprehensive Reviews in Food Science and Food Safety
- Date Published:
- Journal Name:
- Comprehensive Reviews in Food Science and Food Safety
- Volume:
- 24
- Issue:
- 6
- ISSN:
- 1541-4337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acidδ13C (δ13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ13C (δ13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ13CAAvalues or the diagnostic microalgalδ13CEAAfingerprints. Theseδ13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies.more » « less
-
Abstract Microalgae are promising biological factories for diverse natural products. Microalgae tout high productivity, and their biomass has value in industrial products ranging from biofuels, feedstocks, food additives, cosmetics, pharmaceuticals, and as alternatives to synthetic or animal‐derived products. However, harvesting microalgae to extract bioproducts is challenging given their small size and suspension in liquid growth media. In response, technologic developments have relied upon mechanical, chemical, thermal, and biological means to dewater microalgal suspensions and further extract bioproducts. In this review, the effectiveness and considerations were evaluated for the implementation of microalgae harvesting techniques. Nonbiological methods—filtration, chemical, electrical, and magnetic nanoparticle flocculation, centrifugation, hydrothermal liquefaction, and solvent‐based extraction, as well as biological coculture‐based methods are included. Recent advances in coculture algae‐flocculation technologies that involve bacteria and fungi are summarized. These produce a variety of natural bioproducts, which show promise in fuel and food additive applications. Furthermore, this review addresses the developments of genetic tools and resources to optimize the productivity and harvesting of microalgae or to provide new bioproducts via heterologous expression. Finally, a glimpse of future biotechnologies that will converge to produce, harvest, and process microalgae using sustainable and cost‐effective methods is offered.more » « less
-
Anaerobic digestion (AD), microalgae cultivation, and microbial fuel cells (MFCs) are the major biological processes to convert organic solid wastes and wastewater in the agricultural industry into biofuels, biopower, various biochemical and fertilizer products, and meanwhile, recycle water. Various nanomaterials including nano zero valent irons (nZVIs), metal oxide nanoparticles (NPs), carbon-based and multicompound nanomaterials have been studied to improve the economics and environmental sustainability of those biological processes by increasing their conversion efficiency and the quality of products, and minimizing the negative impacts of hazardous materials in the wastes. This review article presented the structures, functionalities and applications of various nanomaterials that have been studied to improve the performance of AD, microalgae cultivation, and MFCs for recycling and valorizing agricultural solid wastes and wastewater. The review also discussed the methods that have been studied to improve the performance of those nanomaterials for their applications in those biological processes.more » « less
-
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.more » « less
An official website of the United States government
