skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 27, 2026

Title: Somatic selection shapes mutation accumulation in Citrus sinensis
An organism becomes genetically mosaic through the accumulation of somatic mutations. Genetic mosaicism is a commonality of multicellular life and has been studied extensively in humans due to its associations with aging and diseases. In humans, somatic selection shapes the accumulation of somatic mutations, with strong signatures of positive somatic selection in cancer cell lineages. So far, evidence for somatic selection in plants has been inconsistent. The evolutionary implications of genetic mosaicism in humans and other animals are limited by early specification of germline cells, preventing transmission of somatic mutations to progeny. In contrast, many plant lineages reproduce asexually with clonal progeny derived from vegetative tissues. We describe the patterns and processes shaping somatic mutation accumulation within a single, 149-year-old historic sweet orange (Citrus sinensis) tree and within a clonal lineage of sweet orange. More than 12,000 somatic mutations were identified in the historic tree and 28,000 somatic mutations were identified across 199 clonally related sweet orange accessions. Both the spatial and genomic distributions of somatic mutations are non-random. The spatial patterns of somatic mutations across the historic tree depend on tree growth and development and their accumulation across the tree canopy recapitulates branching topology. Analysis of the genomic distribution of somatic mutations revealed that the subtelomeres, which are large arrays of ~180 bp repeats, are mutation hotspots. Finally, there was genomic evidence that somatic selection shapes the accumulation of somatic mutations both within the historic tree and also during clonal propagation.  more » « less
Award ID(s):
2215705
PAR ID:
10656455
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding how mutations arise and spread through individuals and populations is fundamental to evolutionary biology. Most organisms have a life cycle with unicellular bottlenecks during reproduction. However, some organisms like plants, fungi, or colonial animals can grow indefinitely, changing the manner in which mutations spread throughout both the individual and the population. Furthermore, clonally reproducing organisms may also achieve exceedingly long lifespans, making somatic mutation an important mechanism of creating heritable variation for Darwinian evolution by natural selection. Yet, little is known about intra-organism mutation rates and evolutionary trajectories in long-lived species. Here, we study the Pando aspen clone, the largest known quaking aspen (Populus tremuloides) clone founded by a single seedling and thought to be one of the oldest studied organisms. Aspen reproduce vegetatively via new root-borne stems forming clonal patches, sometimes spanning several hectares. To study the evolutionary history of the Pando clone, we collected and sequenced over 500 samples from Pando and neighboring clones, as well as from various tissue types within Pando, including leaves, roots, and bark. We applied a series of filters to distinguish somatic mutations from the pool of both somatic and germline mutations, incorporating a technical replicate sequencing approach to account for uncertainty in somatic mutation detection. Despite root spreading being spatially constrained, we observed only a modest positive correlation between genetic and spatial distance, suggesting the presence of a mechanism preventing the accumulation and spread of mutations across units. Phylogenetic models estimate the age of the clone to between ~16,000-80,000 years. This age is generally corroborated by the near-continuous presence of aspen pollen in a lake sediment record collected from Fish Lake near Pando. Overall, this work enhances understanding of mutation accumulation and dispersal within and between ramets of long-lived, clonally-reproducing organisms. Significance StatementThis study enhances our understanding of evolutionary processes in long-lived clonal organisms by investigating somatic mutation accumulation and dispersal patterns within the iconic Pando aspen clone. The authors estimated the clone to be between 10,000 and 80,000 years old and uncovered a modest spatial genetic structure in the 42.6-hectare clone, suggesting localized mutation build-up rather than dispersal along tissue lineages. This work sheds light on an ancient organism and how plants may evolve to preserve genetic integrity in meristems fueling indefinite growth, with implications for our comprehension of adaptive strategies in long-lived perennials. 
    more » « less
  2. The unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations. 
    more » « less
  3. Abstract The unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations. 
    more » « less
  4. Surrogate selection is an experimental design that without sequencing any DNA can restrict a sample of cells to those carrying certain genomic mutations. In immunological disease studies, this design may provide a relatively easy approach to enrich a lymphocyte sample with cells relevant to the disease response because the emergence of neutral mutations associates with the proliferation history of clonal subpopulations. A statistical analysis of clonotype sizes provides a structured, quantitative perspective on this useful property of surrogate selection. Our model specification couples within-clonotype birth-death processes with an exchangeable model across clonotypes. Beyond enrichment questions about the surrogate selection design, our framework enables a study of sampling properties of elementary sample diversity statistics; it also points to new statistics that may usefully measure the burden of somatic genomic alterations associated with clonal expansion. We examine statistical properties of immunological samples governed by the coupled model specification, and we illustrate calculations in surrogate selection studies of melanoma and in single-cell genomic studies of T cell repertoires. 
    more » « less
  5. Abstract Plants have the ability to transmit mutations to progeny that arise through both meiotic and mitotic (somatic) cell divisions. This is because the same meristem cells responsible for vegetative growth will also generate gametes for sexual reproduction. Despite the potential for somatic mutations to contribute to genetic variation and adaptation, their role in plant evolution remains largely unexplored. We conducted experiments with the bush monkeyflower (Mimulus aurantiacus) to assess the phenotypic effects of somatic mutations inherited across generations. By generating self-pollinations within a flower (autogamy) or between flowers on different stems of the same plant (geitonogamy), we tracked the effects of somatic mutations transmitted to progeny. Autogamy and geitonogamy lead to different segregation patterns of somatic mutations among stems, with only autogamy resulting in offspring that are homozygous for somatic mutations specific to that stem. This allowed us to compare average phenotypic differences between pollination treatments that could be attributed to the inheritance of somatic variants. While most experimental units showed no impacts on fitness, in some cases, we detected increased seed production, as well as significant increases in drought tolerance, even though M. aurantiacus is already well adapted to drought conditions. We also found increased variance in drought tolerance following autogamy, consistent with the hypothesis that somatic mutations transmitted between generations can impact fitness. These results highlight the potential role of inherited somatic mutations as a relevant source of genetic variation in plant evolution. 
    more » « less