skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: How Did Westward Volcaniclastic Deposits Accumulate in the Deep Sea Following the January 2022 Eruption of Hunga Volcano?
Abstract Most volcanic eruptions on Earth take place below the ocean surface and remain largely unobserved. Reconstruction of past submerged eruptions has thus primarily been based on the study of seafloor deposits. Rarely before the 15 January 2022 eruption of Hunga volcano (Kingdom of Tonga) have we been able to categorically link deep‐sea deposits to a specific volcanic source. This eruption was the largest in the modern satellite era, producing a 58‐km‐tall plume, a 20‐m high tsunami, and a pressure wave that propagated around the world. The eruption induced the fastest submarine density currents ever measured, which destroyed submarine telecommunication cables and traveled at least 85 km to the west to the neighboring Lau Basin. Here we report findings from a series of remotely operated vehicle dives conducted 4 months after the eruption along the Eastern Lau Spreading Center‐Valu Fa Ridge. Hunga‐sourced volcaniclastic deposits 7–150 cm in thickness were found at nine sites, and collected. Study of the internal structure, grain size, componentry, glass chemistry, and microfossil assemblages of the cores show that these deposits are the distal portions of at least two ∼100‐km‐runout submarine density currents. We identify distinct physical characteristics of entrained microfossils that demonstrate the dynamics and pathways of the density currents. Microfossil evidence suggests that even the distal parts of the currents were erosive, remobilizing microfossil‐concentrated sediments across the Lau Basin. Remobilization by volcaniclastic submarine density currents may thus play a greater role in carbon transport into deep sea basins than previously thought.  more » « less
Award ID(s):
1737382
PAR ID:
10656487
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Geochemistry,Geophysics, Geosystems published byWiley Periodicals LLC on behalf ofAmerican Geophysical Union.
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
26
Issue:
4
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mass mortality of marine animals due to volcanic ash deposition is present in the fossil record but has rarely been documented in real time. Here, using remotely-operated vehicle video footage and analysis of ash collected at the seafloor, we describe the devastating effect of the record-breaking 2022 Hunga submarine volcanic eruption on endangered and vulnerable snail and mussel species that previously thrived at nearby deep-sea hydrothermal vents. In contrast to grazing, scavenging, filter-feeding, and predatory vent taxa, we observed mass mortality, likely due to smothering during burial by thick ash deposits, of the foundation species, which rely on symbiotic chemosynthetic bacteria for the bulk of their nutrition. This is important for our broad understanding of the natural disturbance of marine ecosystems by volcanic eruptions and for predicting the effects of anthropogenic disturbance, like deep-sea mining, on these unique seafloor habitats. 
    more » « less
  2. Explosive eruption jets rising through relatively shallow water layers form eruption columns that can deliver volcanic ash, gases, and entrained water to the atmosphere and ocean in sequence or simultaneously, depending on eruption source parameters (Gilchrist et al. 2023). Despite the mesospheric eruption column height of the January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai (HTHH), the majority of erupted material was delivered to the surrounding seafloor via submarine pyroclastic density currents (PDCs). Deposits of HTHH show evidence of axisymmetric terraced deposits, which we show are linked to the mass eruption rate and dynamics of column collapse. We use scaled analog experiments on multiphase sand-water fountains injected into water layers of varying depth to model the collapse dynamics of shallow water eruption columns and to link fountain source conditions to deposit topography. The source strength of multiphase fountains predicts whether they collapse periodically or continuously via sedimentation waves with varying frequency and momentum. In turn, the frequency and momentum of sedimentation waves impacting the tank base determines whether ground-hugging gravity currents flowing out of the sedimentation wave impact zone are initially erosive or depositional. On the basis of experiments, we propose that syn-eruptive shallow submarine caldera deposits that show evidence of terracing and proximal scouring are linked to relatively strong eruption jets in the regime where the jet is in partial collapse or total collapse. In these regimes, the eruption jet collapses periodically as sedimentation waves that erode the deposit in the impact zone and transition into submarine PDCs that deposit the sedimentation wave mixture into regularly spaced terraces thereafter (Fig. 1, black boxes). In contrast, we expect weak eruption jets to occur in the total collapse regime where sedimentation waves descend in rapid succession and effectively supply submarine PDCs continuously which, in turn, build deposits lacking terraces (Fig. 1, blue box). For common values of caldera eruption source parameters, we link submarine PDC deposit morphology to eruption jet strength and plausible mass eruption rates. 
    more » « less
  3. Abstract On 15 January 2022, Hunga volcano erupted, creating an extensive and high-reaching umbrella cloud over the open ocean, hindering traditional isopach mapping and fallout volume estimation. In MODIS satellite imagery, ocean surface water was discolored around Hunga following the eruption, which we attribute to ash fallout from the umbrella cloud. By relating intensity of ocean discoloration to fall deposit thicknesses in the Kingdom of Tonga, we develop a methodology for estimating airfall volume over the open ocean. Ash thickness measurements from 41 locations are used to fit a linear relationship between ash thickness and ocean reflectance. This produces a minimum airfall volume estimate of$${1.8}_{-0.4}^{+0.3}$$ 1.8 - 0.4 + 0.3 km3. The whole eruption produced > 6.3 km3of uncompacted pyroclastic material on the seafloor and a caldera volume change of 6 km3DRE. Our fall estimates are consistent with the interpretation that most of the seafloor deposits were emplaced by gravity currents rather than fall deposits. Our proposed method does not account for the largest grain sizes, so is thus a minimum estimate. However, this new ocean-discoloration method provides an airfall volume estimate consistent with other independent measures of the plume and is thus effective for rapidly estimating fallout volumes in future volcanic eruptions over oceans. 
    more » « less
  4. Site U1590 (proposed Site CSK-03A) is located 5 km northwest of the submarine Kolumbo crater on its flank in the Anhydros Basin at 397 meters below sea level (mbsl) (Figure F1). It lies on the intersection of Seismic Lines HH06-22 and HH06-34 (Figure F2). Drilling took place in two holes (U1590A and U1590B) to a maximum recovery depth of 627.8 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used). Average core recovery in Hole U1590A was moderate (61%), but recovery in Hole U1590B was poor (14%). The seismic profiles across the Kolumbo edifice reveal five units interpreted as Kolumbo-derived volcaniclastics (K1–K5, from the base up; Figure F2) with Unit K5 representing the 1650 Common Era (CE) eruption (Hübscher et al., 2015; Preine et al., 2022). The submarine cones northeast of Kolumbo postdate Unit K2 on seismic profiles, but their products are not expected to be prominent in our drill cores. The aim of drilling on the flanks of Kolumbo was to penetrate the different seismically recognized volcanic eruption units from that volcano (K1, K2, K3, and K5 or their thin, lateral equivalents) as well as many eruption units from Santorini and traces from the submarine cones northeast of Kolumbo. This enabled characterization of the products of the Kolumbo eruptions and construction of a coherent stratigraphy for Santorini and the submarine Kolumbo volcano chain together. The anticipated lithologies were volcaniclastics, muds, and turbidites. Site U1590 lies at the foot of the Kolumbo edifice; it allowed us to drill Seismic Units K1, K2, K3, and K5 and therefore nearly the entire history of Kolumbo Volcano. Intercalated seismic units are believed to contain the products of Santorini eruptions, including potentially those of smaller magnitude than recorded at the more distal basin sites. 
    more » « less
  5. SUMMARY The eruption of the submarine Hunga Tonga-Hunga Haʻapai (Hunga Tonga) volcano on 15 January 2022, was one of the largest volcanic explosions recorded by modern geophysical instrumentation. The eruption was notable for the broad range of atmospheric wave phenomena it generated and for their unusual coupling with the oceans and solid Earth. The event was recorded worldwide across the Global Seismographic Network (GSN) by seismometers, microbarographs and infrasound sensors. The broad-band instrumentation in the GSN allows us to make high fidelity observations of spheroidal solid Earth normal modes from this event at frequencies near 3.7 and 4.4 mHz. Similar normal mode excitations were reported following the 1991 Pinatubo (Volcanic Explosivity Index of 6) eruption and were predicted, by theory, to arise from the excitation of mesosphere-scale acoustic modes of the atmosphere coupling with the solid Earth. Here, we compare observations for the Hunga Tonga and Pinatubo eruptions and find that both strongly excited the solid Earth normal mode 0S29 (3.72 mHz). However, the mean modal amplitude was roughly 11 times larger for the 2022 Hunga Tonga eruption. Estimates of attenuation (Q) for 0S29 across the GSN from temporal modal decay give Q = 332 ± 101, which is higher than estimates of Q for this mode using earthquake data (Q = 186.9 ± 5). Two microbarographs located at regional distances (<1000 km) to the volcano provide direct observations of the fundamental acoustic mode of the atmosphere. These pressure oscillations, first observed approximately 40 min after the onset of the eruption, are in phase with the seismic Rayleigh wave excitation and are recorded only by microbarographs in proximity (<1500 km) to the eruption. We infer that excitation of fundamental atmospheric modes occurs within a limited area close to the site of the eruption, where they excite select solid Earth fundamental spheroidal modes of similar frequencies that are globally recorded and have a higher apparent Q due to the extended duration of atmospheric oscillations. 
    more » « less