skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 27, 2026

Title: Using Large Language Models to Analyze Students’ Collaborative Argumentation in Classroom Discussions
Collaborative argumentation enables students to build disciplinary knowledge and to think in disciplinary ways. We use Large Language Models (LLMs) to improve existing methods for collaboration classification and argument identification. Results suggest that LLMs are effective for both tasks and should be considered as a strong baseline for future research.  more » « less
Award ID(s):
1917673
PAR ID:
10656630
Author(s) / Creator(s):
; ;
Publisher / Repository:
National Council on Measurement in Education (NCME). https://aclanthology.org/2025.aimecon-main.13.pdf
Date Published:
Volume:
1
Page Range / eLocation ID:
111-125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Collaborative argumentation enables students to build disciplinary knowledge and to think in disciplinary ways. We use Large Language Models (LLMs) to improve existing methods for collaboration classification and argument identification. Results suggest that LLMs are effective for both tasks and should be considered as a strong baseline for future research. 
    more » « less
  2. Large Language Models (LLMs) have demonstrated remarkable success across various domains. However, despite their promising performance in numerous real-world applications, most of these algorithms lack fairness considerations. Consequently, they may lead to discriminatory outcomes against certain communities, particularly marginalized populations, prompting extensive study in fair LLMs. On the other hand, fairness in LLMs, in contrast to fairness in traditional machine learning, entails exclusive backgrounds, taxonomies, and fulfillment techniques. To this end, this survey presents a comprehensive overview of recent advances in the existing literature concerning fair LLMs. Specifically, a brief introduction to LLMs is provided, followed by an analysis of factors contributing to bias in LLMs. Additionally, the concept of fairness in LLMs is discussed categorically, summarizing metrics for evaluating bias in LLMs and existing algorithms for promoting fairness. Furthermore, resources for evaluating bias in LLMs, including toolkits and datasets, are summarized. Finally, existing research challenges and open questions are discussed. 
    more » « less
  3. Large language models (LLMs) with billions of parameters and pretrained on massive amounts of data are now capable of near or better than state-of-the-art performance in a variety of downstream natural language processing tasks. Neural machine translation (NMT) is one such task that LLMs have been applied to with great success. However, little research has focused on applying LLMs to the more difficult subset of NMT called simultaneous translation (SimulMT), where translation begins before the entire source context is available to the model. In this paper, we address key challenges facing LLMs fine-tuned for SimulMT, validate classical SimulMT concepts and practices in the context of LLMs, explore adapting LLMs that are fine-tuned for NMT to the task of SimulMT, and introduce Simul-LLM, the first open-source fine-tuning and evaluation pipeline development framework for LLMs focused on SimulMT. 
    more » « less
  4. Safety is critical to the usage of large language models (LLMs). Multiple techniques such as data filtering and supervised fine tuning have been developed to strengthen LLM safety. However, currently known techniques presume that corpora used for safety alignment of LLMs are solely interpreted by semantics. This assumption, however, does not hold in real-world applications, which leads to severe vulnerabilities in LLMs. For example, users of forums often use ASCII art, a form of text-based art, to convey image information. In this paper, we propose a novel ASCII art-based jailbreak attack and introduce a comprehensive benchmark Vision-in-Text Challenge (VITC) to evaluate the capabilities of LLMs in recognizing prompts that cannot be solely interpreted by semantics. We show that five SOTA LLMs (GPT-3.5, GPT-4, Gemini, Claude, and Llama2) struggle to recognize prompts provided in the form of ASCII art. Based on this observation, we develop the jailbreak attack ArtPrompt, which leverages the poor performance of LLMs in recognizing ASCII art to bypass safety measures and elicit undesired behaviors from LLMs. ArtPrompt only requires black-box access to the victim LLMs, making it a practical attack. We evaluate ArtPrompt on five SOTA LLMs, and show that ArtPrompt can effectively and efficiently induce undesired behaviors from all five LLMs. Our code is available at https: //github.com/uw-nsl/ArtPrompt. 
    more » « less
  5. Recent years have seen great success of large language models (LLMs) in performing many natural language processing tasks with impressive performance, including tasks that directly serve users such as question answering and text summarization. They open up unprecedented opportunities for transforming information retrieval (IR) research and applications. However, concerns such as halluciation undermine their trustworthiness, limiting their actual utility when deployed in real-world applications, especially high-stake applications where trust is vital. How can we both exploit the strengths of LLMs and mitigate any risk caused by their weaknesses when applying LLMs to IR? What are the best opportunities for us to apply LLMs to IR? What are the major challenges that we will need to address in the future to fully exploit such opportunities? Given the anticipated growth of LLMs, what will future information retrieval systems look like? Will LLMs eventually replace an IR system? In this perspective paper, we examine these questions and provide provisional answers to them. We argue that LLMs will not be able to replace search engines, and future LLMs would need to learn how to use a search engine so that they can interact with a search engine on behalf of users. We conclude with a set of promising future research directions in applying LLMs to IR. 
    more » « less